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1. INTRODUCTION

Gradient models are analytic representations of the spatial distributions of density,

pressure, temperature, and velocity of expanding propellant gases between the gun breech

and the projectile base. In a thermodynamic interior ballistic model, only mass and energy

conservation are explicitly required, and, therefore, a gradient model must be provided to

account for the spatial variation in gas momentum. Closure is achieved by including a

constitutive law for the gas and requiring that, at any point in time during the interior ballistic

process, an integral average of the local thermodynamic properties of the gas equal the

corresponding average gas properties derived from the constitutive law and energy

conservation for the system as a whole.

In general, use of a gradient model results in fixed gradients of system properties

throughout the interior ballistic process and, thus, a fixed ratio of projectile base pressure to

breech pressure (Corner 1950; Vinti and Kravitz 1949). Exceptions arise if boundary

conditions and ratio of propellant charge mass to projectile mass (i.e., charge to mass ratio

[C/M]), vary during the interior ballistic process, as in the Modified Lagrange gradient model of

Morrison and Coffee (1990), or if multiphase effects are included, as in the RGA gradient

model of Robbins, Anderson, and Gough (1990). The fixed (or constant) gradient character of

basic gradient models is a result of the exclusion of wave phenomena, such that changes in

the physical state of the system are instantaneously communicated throughout the gas in

accordance with the distribution functions of gas properties for a particular gradient model.

Thus, gradient models entail an implicit assumption of infinite gas sound speed.

The development of gradient models has been closely tied to the ballistics of conventional

guns, and such models do not appear to have been widely applied to novel propulsion

concepts such as the light gas gun (Seigel 1979). However, in the derivation of traditional

gradient models, i.e., the Lagrange (Corner 1950) and the Pidduck-Kent (Vinti and Kravitz

1949) models, there are no assumptions which limit their application to conventional guns or

to gas properties characteristic of conventional gun propellants. Therefore, traditional gradient

models should be applicable in thermodynamic interior ballistic models of gas dynamic

propulsion processes irrespective of molecular weight or sound speed of the driving gas,

subject to the usual consideration of expansion ratio and, in the case of the Lagrange
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gradient, C/M (C. 1950; Vinti and Kravitz 1949). Indeed, the accuracy of a gradient

model for a give,. configuration should improve with increasing sound speed since wave

transit time in the'-olumn is reduced. As a result, the relaxation of wave processes which

dominate early ex - and the subsequent establishment of a nearly constant base-to-

breech pressure ra*ý Id occur more quickly, thus, at a lower expansion ratio for a low
molecular weight ga:iýsing the range of validity and the accuracy of the gradient model.

Thus, the pressure c. oproximation and the accuracy of ballistic solutions obtained

using traditional graclA Ils should actually improve as molecular weight is decreased

and sound speed inc.,d.r

It has been suggest. hat the electrothermal gun concept may offer a practical means to

employ low molecular wei,'- t gases (Juhasz et al. 1988). In the case of an inert working fluid,

it has been experimentally,- onstrated that the rate of conversion of liquid to gas, as well as

the pressure, density, and erature of the gas, are dependent on the temporal and spatial

distributions of the plasma sý, e.While experimental data does suggest some success in

achieving ballistic control and r, )eatability with inert working fluids, the data does not

constitute a clear demonstratio .b allistic control. In the case of energetic working fluids, or

propellants, the evidence of a cl .correspondence between the rate of conversion of

propellant to gas and the charact stics of the plasma source is less conclusive, particularly

for cases in which the ratio of propellant chemical energy to plasma energy is greater than

about 2 to 4. Although experimental data is somewhat limited, it would appear that

reasonable ballistic repeatability may be achievable for ratios of propellant chemical energy to

plasma energy at least on the order of one.

If, however, it is assumed that for some combinations of plasma source and working fluid

(or propellant), gas generation can be precisely controlled by the plasma source such that

variations in the rate of plasma deposition will result in corresponding variations in chemical

energy release, then repeatable control of the ballistic process may also be assumed. If it is

further assumed that such permissible combinations of plasma source and working fluid are

possible for a sufficiently wide range of working fluid characteristics, it may then be possible to

identify unconventional propellants, which upon reaction generate low (average) molecular

weight gaseous products. In comparison with the combustion products of conventional solid

propellants, a low molecular weight gas contains a greater number of molecules per unit
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mass, the ratio of the number of moles per unit mass being inversely proportional to the ratio

of molecular weights of the two gases. As a result, for a given gas temperature, the low

molecular weight gas will have higher specific internal energy and impetus, as well as higher

speed of sound, such that a lower mass of propelling gas is required to achieve a given initial

gas internal energy. Therefore, for fixed initial gas internal energy, the kinetic energy of a low

molecular weight propelling gas, at any given projectile velocity, represents a smaller fraction

of the total chemical energy of the system, resulting in a reduced projectile base to breech

pressure ratio (after relaxation of wave processes) and increased thermodynamic efficiency of

the expansion process (i.e., higher ballistic efficiency than is achievable with conventional

propellants).

In recent discussions of the electrothermal-chemical gun concept, it has been suggested

that the reduced pressure gradient in a gun using a low molecular weight gas is a result of the

higher sound speed of the gas, which permits more rapid transit of pressure waves between

the breech and the projectile base. Furthermore, it has been suggested that traditional

gradient models, which exclude wave phenomena, should not, therefore, be used in interior

ballistic simulations of the electrothermal gun. As noted earlier, the derivations of such

gradient models do not introduce limitations on the properties of propelling gases. Thus, it

would appear that their application should not be limited to the conventional gun case.

The objective of this investigation is to computationally explore the range of applicability of

the standard gradient models, Lagrange and Pidduck.Kent, in the simulation of interior ballistic

processes involving gases of varying molecular weight. To simplify the analysis, the Lagrange

ballistic problem is used as the framework for simulations. The lumped parameter IBHVG2

computer model (Anderson and Fickie 1987) was used to perform interior ballistic simulations

with the Lagrange and Pidduck-Kent gradient models. The one-dimensional XNOVAKTC

computer model (Gough 1990) was used to provide wave dynamic solutions as a baseline for

comparisons. The results indicate that traditional gradient models are indeed applicable in

interior ballistic simulations of gun concepts utilizing low molecular weight gases.

2. LAGRANGE BALLISTIC PROBLEM

The Lagrange problem is an idealization of the interior ballistic process in a gun. It is

assumed that the gun is a right circular cylinder (i.e., chamber and bore diameter are equal)
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closed at one end by the breech. It is also assumed that prior to the start of projectile motion,

the propellant is instantaneously burned, such that the chamber is initially filled with a gas of

uniform pressure, density, and temperature. The gas is assumed to be inviscid and heat loss

to the walls is neglected.

Comer (1950) has provided a historical summary of efforts to solve the Lagrange problem,

including the development of the Lagrange and Pidduck-Kent gradient models. These models

are addressed in greater detail in subsequent sections and in Appendices A and B. The first

wave dynamic solution of the Lagrange problem was presented by Love and Pidduck (1922).

They analyzed the Lagrange problem using the method of characteristics, tracing the

rarefaction wave generated by acceleration of the projectile, as it moves through the gas

column between the projectile base and the breech. More recently, the Lagrange problem

and the solution of Love and Pidduck (1922) have been used as a test case for

multidimensional interior ballistic models (Schmitt and Mann 1981; Edelman, private

communication).

The pressure distributions behind the projectile at various times during the ballistic

process, as obtained by Love and Pidduck (1922), are shown in Figure 1. The initial chamber

pressure is 6,333.3 kg/cm 2 or 621.09 MPa. As the projectile begins to accelerate, a

rarefaction wave is generated at the projectile base and begins to move toward the breech.

The pressure gradient between the projectile base and the wave front prior to the first wave

reflection from the breech, and, thus, the gas kinetic energy distribution, are characteristic of a

simple wave. The wave reflects from the breech as a rarefaction, producing a nearly flat

pressure distribution and a base-to-breech pressure ratio near 1.0 when the wave reaches the

projectile base. This reduced pressure gradient results in reduced gas acceleration and, thus,

a reduced rate of increase of gas kinetic energy. Upon reflection of the rarefaction wave from

the projectile base, the process repeats; however, the pressure gradient is substantially

reduced. By the second reflection from the projectile base, the wave disturbance. has relaxed

significantly, and, as can be seen in Figure 2, the ratio of base-to-breech pressure is

approaching a constant value of approximately 0.9.

4
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3. LAGRANGE GRADIENT MODEL

The Lagrange gradient model is the instantaneous solution of the continuity and

momentum equations for a gaseous propelling charge in the Lagrange gun, with the

assumption that the gas density is uniform between the breech and the projectile base (see

Appendix A). This leads to a gas velocity distribution which varies linearly with position along

the tube, from zero at the breech to the projectile velocity at the base of the projectile. The

resulting pressure distribution is a quadratic function of distance from the breech. As noted by

Comer (1950), the term *Lagrange approximation" is applied to both the assumption of zero

gas density gradient and the assumption of a linear gas velocity distribution. It can be shown

that a zero gas density gradient implies a linear gas velocity distribution, but the reverse is not

necessarily true. While the Lagrange model is an approximate solution to the Lagrange

ballistic problem, it must be noted that this model has been routinely applied in the simulation

of "real* guns in which the propellant combusts at a finite rate during the ballistic process. In

this case, it is assumed that the unbumt propellant is uniformly distributed throughout the gas,

moves at the local gas velocity, and bums at a rate dependent on the space mean pressure.

The Lagrange gradient model is generally applicable in cases for which the charge-to-

mass ratio is "small." However, reasonable results are obtained for C/M in excess of 2.0.

Using the velocity and pressure distributions of the Lagrange model, relationships between

breech, space mean, and base pressures, as well as gas and projectile kinetic energies, are

obtained. These are

PBREECH - P&4SE 1 + 
(1)

P- Pa4SE(1 .I . (2)

KEGAS - KEpRw( 3 (3)

where

. -(4)
M
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is the ratio of propellant mass to projectile mass and "is the space mean pressure of the gas.

The gradients of pressure and ve!ocity in the Lagrange model are not dependent on specific

gas properties, other than C/M, and the numerical factors which arise in the model (1/2 and

1/3) are constants independent of systr-m parameters.

4. PIDDUCK-KENT GRADIENT MODEL

The Pidduck-Kent model is a special solution of the continuity and momentum equations

for the gaseous propelling charge in the Lagrange gun. This special solution was first

published by Love and Pidduck (1922). A more detailed presentation was latter published by

Kent (1936) and, subsequently, an extended treatment was published by Vinti and Kravitz

(1949). The Pidduck-Kent model addresses the nonuniformity of gas density which is

neglected in the Lagrange model and which becomes increasingly important with increasing

C/M. This is accomplished by assuming that each element of the gas evolves adiabatically

from its initial state with all gas elements foilowing the same adiabatic. In the resulting

solution, it is found that, in its initial state, the gas density, pressure, and temperature are

decreasing functions of distance along the tube from the breech to the projectile base. A

detailed derivation of the Pidduck-Kent solution is presented in Appendix B. Pressure and

energy relationships analogous to Equations 1-3 are obtained in the Pidduck-Kent gradient

model. These are

PBREECH - PBASE( 1 - ao)-(nl) (5)

PaPASE(1 + FJ (6)

KFGAS -KEpRo~j(. (7)

where n Is the polytropic index,

1

- 1)'
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and a. and 5 are parameters arising in the Pidduck-Kent rilution which are related by

1 1 3[1 2(n + 1) (8)S2n +3 a o F

In the limit as e (i.e., CIM) approaches zero, 8 approaches 3, and ao approaches

e
[2(n + 1)]

(see Appendix B) such that Equations 5-7 reduce to the Lagrange model, Equations 1-3.

In contrast with the Lagrange model, the parameters of the Pidduck-Kent solution, ao and

5, are functions of C/M and the ratio of specific heats. Similarly, the distributions of

thermodynamic quantities are dependent on both C/M and the ratio of specific heats. The

calculation of ao and 3 for a specific ballistic system has been simplified by the development

of a least squares fit of computed values of 5 using a polynomial function in a and -y (Grollman

and Baer 1970). (The least squares fit of 5 was completed for 1.2 y :5 < 1.3, however, values

of 8 for y = 1.4 are within 1-2% of values obtained using the tables of Vinti and Kravitz [1949],

see Appendix D). Equation 8 is then used to calculate a0.

It has been generally supposed, though never proven, that the Pidduck-Kent solution of

the Lagrange problem approaches the wave dynamic solution for sufficiently large projectile

travel. Additional discussion of this issue can be found in Appendices B and E.

5. PROBLEM DESCRIPTION

The Lagrange ballistic problem was chosen as the framework for evaluation of the range

of applicability of the Lagrange and Pidduck-Kent gradient models. This physically simple

configuration was chosen to facilitate direct comparison of lumped parameter solutions based

on these gradient models with one-dimensional wave dynamic solutlons. Not only Is the

Lagrange problem the framework for the development of these gradient models, but, by

8



assuming a prebumed propellant, differences in lumped parameter and wave dynamic

solutions arising from physical models of component processes (i.e., ignition, combustion,

drag, etc.) are avoided.

In order to investigate the effects of gas molecular weight, three propelling gas

compositions were selected. These are hydrogen gas, which has been heated by an external

source; the combustion products of a mixture of 100% hydrogen peroxide and octane with an

oxidizer-to-fuel ratio of approximately 10 to 1; and the combustion products of JA2 solid

propellant. The thermochemical properties of these gases, calculated using the Blake code

(Freedman 1982) are given in Table 1. The initial gas pressure was chosen to be 500 MPa in

all cases. The initial temperature of the hydrogen gas was chosen to be the flame

temperature of JA2, while the flame temperature of the octane-hydrogen peroxide mixture is

somewhat lower.

The constant bore diameter of the Lagrange gun was chosen to be 120 mm. The

projectile mass is 9.0 kg. Calculations were performed for the C/M of 0.5, 1.0, 3.0, and 8.0

with the gas properties presented in Table 1. This leads to different initial chamber volumes

in each case as indicated in Table 2. Shot start pressure, bore resistance, and gas pressure

ahead of the projectile were assumed to be zero and heat transfer was neglected in all

calculations.

The XNOVAKTC code (Gough 1990) was used for one-dimensional simulations of the

Lagrange gun, while the IBHVG2 code (Anderson and Fickie 1987) was used in

thermodynamic simulations with both the Lagrange and Pidduck-Kent (Grollman and Baer

1970) gradient model options of this latter code. It is noted that the analytic solution to the

Lagrange problem, as presented in Appendices A (Lagrange Gradient) and B (Pidduck-Kent

Gradient), could have been used in place of IBHP'G2. However, this latter computer model

has been extensively tested and is readily accessible.

9



Table 1. Propelling Gas Properties

Octane/
Hydrogen Peroxide JA2

Initial Pressure (MPa) 500 500 500

Initial Temperature (K) 3,410 3,017 3,410

Initial Density (gicm") 3.1204 x 10.2 2.4892 x 10"1 3.0465 x 10-1

Ratio of Specific Heats 1.4 1.2348 1.225

Covolume (cm 3/g) 3.695 1.044 0.996

Molecular Weight (g/mole) 2.0 16.873 24.8

Impetus (J/g) 14,175.4 1,486.7 1,140

Specific Energy (J/g) 35,438.5 6,331.8 5,066.7

Gas Sound Speed (m!s) 5,036 1,831 1,699

Ideal Gas Sound Speed (mis) 4,454 1,355 1,183

Table 2. Chamber Volumes

Chamber Volume (liters)

Octane/
C/M Mass of Gas Hydrogen Peroxide JA2

(kg)

0.5 4.5 144.2 18.08 14.74
1.0 9.0 288.4 36.16 29.48
3.0 27.0 865.2 108.48 88.44
8.0 72.0 2,307.2 289.28 235.84

10



6. RESULTS AND DISCUSSION

The results of the interior ballistic simulations are presented as graphs of dimensionless

projectile velocity (Y'p) vs. dimensionless projection travel (7p-, see Equations E-21 and E-22)

for C/M of 0.5, 1.0, 3.0, and 8.0.* The trajectories for the hydrogen propelling gas are

presented in Figures 3 and 4. At a C/M of 0.5, the Lagrange and Pidduck-Kent trajectories

coincide with the trajectory obtained from the one-dimensional simulation. At C/M of 1.0, the

one-dimensional and Pidduck-Kent trajectories are nearly indistinguishable, however, the

Lagrange trajectory has begun to diverge. At C/M of 3.0, the Lagrange trajectory has clearly

diverged from the Cr-e-dimensional trajectory by about 5% for dimensionless projectile travels

greater than about 15, which corresponds to an expansion ratio,

1 + ( ýP

of 7.19 (see Table 3). From Equation 3, we see that, for C/M = 3.0, the Lagrange model

predicts that the gas and projectile kinetic energies are equal. In contrast, the Pidduck-Kent

model (Equation 7) predicts that the gas kinetic energy is about 85% of the projectile kinetic

energy (see Table 4). This means that the Lagrange model over-predicts the gas kinetic

energy for large C/M, resulting in an under-prediction of projectile velocity.

The Pidduck-Kent trajectory initially diverges from the one-dimensional trajectory for

dimensionless projectile travels betweon 1 and 10 (C/M = 3.0); however, the two trajoctories

then converge for x P>20. This behavior is related to the wave dynamics in the gas during the

early portion of the ba!listic process (i.e., low expansion ratios). The energy partition for the

one-dimensional solution, for C/M = 3.0, is presented in Figure 5 as a function of

dimensionless projectile travel. During the early travel, th3, wave dynamics of the system are

reflected in the gas kinetic energy. However, the key feature of the energy partition is the

relationship between gas and projectile kinetic energies. Up to a dimensionless travel of

"The introduclion of dimensoonless variables facilitates the comparison of results for prcpelling gases of
substantially different sound speeds and molecular weights. The specific choice of dimens.ionless variables is
suggested by Siegel (1979) based on a characteristic solution of the preburnt propellant ideal gas gun.
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Figure 5. Energy Partition for Hydrogen Gas; C/M = 3.0.

Table 3. Relaticnship Between Expansion Ratio and Dimensionless Projectile Travel
for Hydrogen

Expansion Ratio

j C/M =0.5 C/M = 1.0 C/M =3.0 C/M =8.0

5 13.39 7.19 3.06 1.77

10 25.77 13.39 5.13 2.55

15 38.16 19.58 7.19 3.32

20 50.54 25.77 9.26 4.10

25 62.93 31.96 11.32 4.87

30 75.32 38.16 13.39 5.64

40 100.09 50.54 17.51 7.19

50 124.86 62.93 21.64 8.74

100 248.72 124.86 42.49 16.48
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Table 4. Pidduck-Kent and Lagrar~e Parameters; y = 1.4

KEGASIKEpF 3 j PBREECHWPBASE

C/M 5 ao C/SM C/3M 1 -D (1- a)-(n+,) 1 + c/2M 1 - D

0.5 3.1272 0.0604 0.1599 0.1667 0.1591 1.2436 1.25 1.2543

1.0 3.2315 0.1055 0.3095 0.3333 0.3137 1.4775 1.50 1.4848

3.0 3.5288 0.2174 0.8502 1.0000 0.8281 2.3581 2.50 2.3412

8.0 3.9482 0.3447 2.0262 2.t)667 2.0705 4.3895 5.00 4.3156

Note: Pidduck-Kent parameters, S and a.. are obtained from 18.VG2 calculations based on Grollman and Baer
(1970) least-squares fit.

about 10, the gas and projectile kinetic energies are approximately equal. Above 10, they

diverge and approach a nearly constant ratio of gas to projectile kinetic energy of

approximately 0.83, which is reflected in the projectile trajectory (see Figure 3). Similar results

are observed for the C/M = 8.0 case in Figures 4 and 6. However, the gas kinetic energy is

greater than the projectile kinetic energy in this case and, due to the substantially increased

initial chamber length, a dimensionless travel of 30 is not quite in the asymptotic (isentropic)

region of the projectile trajectory. However, from Figure 6, it can be seen that the ratio of gas

to projectile kinetic energy approaches a constant value, for large dimensionless travel, which

is close to the value obtained with the Pidduck-Kent model (see Table 4). We also note that,

despite the early behavior of the Lagrange trajectory (i.e., the Lagrange and one-dimensional

trajectories are quite close for dimensionless travels up to 30), the Lagrange trajectory

diverges from the one-dimensional solution for larger expansion ratios as the Pidduck-Kent

and one-dimensional solutions converge.

The results for JA2 and the octane-hydrogen peroxide mixture are presented in

Figures 7-10. In general, these results are very similar to those already discussed for the

hydrogen case when presented in terms of dimensionless projectile travel and velocity. All

trajectories are nearly identical for C/M of 0.5 and 1.0. For C/M = 3.0, the Pidduck-Kent

trajectories diverge above the one-dimensional trajectories during early travel and converge

for xp>25, while for C/M = 8.0 and ; P>30 , the Pidduck-Kent solutions have not reached the

asymptotic region and lie above the one-dimensional trajectories. The Lagrange trajectories

14
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Figure 10. Projectile Trajectories for Octane/Hydrog.en Peroxide Combustion Products;
C/M = 0.5, 1.0, and 8.0.

for C/M of 3.0 and 8.0 lie below the one-dimensional trajectories and, in the C/M = 8.0 case,

the Lagrange solutions are expected to diverge with increasing travel.

7. CONCLUSIONS

The applicability of the Lagrange and Pidduck-Kent gradient models in the simulation of

the intedor ballistic process for gases of various molecular weights has been explored using

the Lagrange ballistic problem as the basic framework for the Investigation. The results

indicate that gas molecular weight and sound speed do not impact the validity of these

gradient models, as was anticipated from consideration of the theoretical development of

these models. All computed trajectories for C/M of 0.5 and 1.0 are nearly identical. The

Lagrange model appears to provide reasonably accurate results up to C/M of about 3.0 (e.g.,

velocities within about 5% of the one-dimensional solution at C/M = 3.0 with increasing

accuracy for lower C/M). Using the Pidduck-Kent model, the calculated projectile velocity

approachý.s the one-dimensional solution with increasing projectile travel for C/M of 3.0 and

17



8.0. The results also indicate that the Pidduck-Kent and one-dimensional solutions converge

for expansion ratios characteristic of real guns.
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APPENDIX A:

THE LAGRANGE GRADIENT MODEL
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The Lagrange gradient model was developed as a solution to the Lagrange ballistic

problem, which is described in the text and in Appendix B. This gradient model is widely used

in interior ballistic simulations of real guns, for which the original assumption of a prebumed

propellant gas must be relaxed. While the assumptions used in the derivation of the Lagrange

gradient model are valid only for low charge-to-mass ratio (C/M), it has been found in practical

applications that the model provides reasonable accuracy for C/M as high as 3.0 (e.g.,

velocities within about 5% of a one-dimensional solution at C/M = 3.0 with increasing accuracy

for lower C/M).

A derivation of the Lagrange gradient model is presented here primarily for completeness.

However, concepts used in the derivation of the Lagrange gradient are also applied in the

development of the Pidduck-Kent solution in Appendix B. Therefore, inclusion of the

derivation provides an easy reference for the reader. This particular derivation of the

Lagrange gradient model was previously published by Morrison and Coffee (1990).

The equations of motion governing the motion of the gas in a constant area gun in region

from breech to projectile base are

ap + Vap +p -0 (A-i)
Wt ax ax

P[Ž + v -v ka. (A-2)

with the boundary conditions

XBREECH = 0 , (A-3)

XBASE = y (A-4)

V BREECH = 0 , (A-5)
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VBASE=- d Up, (A-6)

where up is the velocity of the projectile.

In the development of the Lagrange pressure gradient "it is assumed all the propellant

charge (C) is in gaseous form at the time considered." However, "the theory applies without

alteration if it is assumed that," prior to consumption of all the propellant charge, "the unburnt

charge moves with the gas, the distribution of the solid along the bore being the same as the

distribution of gas (Comer 1950)." The gas is assumed to be inviscid and heat loss to the

walls is neglected such that the fir w is isentropic.

We now assume that the density of the gas (or gas plus unbumt charge) is uniform over

the regicn behind the projectile, i.e.,

a= . (A-7),Tx

We then obtain from Eq. A-i,

ap +_pV 0
at ax

or

av 1 ap (A-8)
ax p at

Assuming a constant bore area. AB, (i.e., no chambrage) and noting that p C/ABY,

Eq. A-8 becomes

av 1 ay UpV i- . . . .(A-9)

ax y at y
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integrating Eq. A-9 over the region [O,x], we obtain

v (X) u (A- 10)v(x) = (. Jp.(A 0

Corner notes that the term "Lagrange approximation" is applied to Eq. A-7 or A-10 and the

Eq. A-7 leads to Equation A-1 0, but it is not true that Eq. A-1 0 necessarily implies Eq. A-7

(Corner 1950).

Substituting Eq.,A-10 in Eq. A-2, we have

where ifp a du,/dt, or

a - cop (A-1l1)

Integrating on [x,y]. and noting that

OP (PBASE - PRES) A
M

P(O) = PBREECH,

and

P(Y) = PaBASE

where PRES is the bore resistance pressure and M is the projectile mass, we obtain

25
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P(x) = P8ASE + C (PBAsE - PRES) 1 - 2. (A-12)

For x = 0,

C
PBREECH - PBASE + -- (PBASE - PRES) • (A-13)

2M

The space mean pressure is defined by

P = P(x)dx, (A-14)
y

and, upon substituting Eq. A-12, we obtain

P ' P8ASE + - (PaAsE- PRES) . (A-15)

The kinetic energy associated with the motion of the gas is

KEGAS £YABPv2 dx . (A- 16)

Using Eq. A-10, we obtain

2

KEGAS 1 BP UP12x3 Y

or

KEGAS 1 C2 (A-17)
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APPENDIX B:

THE PIDDUCK-KENT SPECIAL SOLUTION FOR THE MOTION
OF THE POWDER GAS IN A GUN
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The Pidduck-Kent gradient model, like the Lagrange model, is an approximate solution of

the continuity and momentum equations for the gaseous propelling charge in the Lagrange

ballistic problem. This solution was first suggested by Love and Pidduck (1922). Kent (1936)

noted an error in Pidduck's solution and presented solutions for both ideal and nonideal

gases. Vinti and Kravitz (1949) have published a detailed treatment of the Pidduck-Kent

gradient model, along with tables for use in computing the parameters which arise in the

model. Corner (1950) also discusses the development of the Pidduck-Kent gradient model

The Lagrange ballistic problem is an idealization of the interior ballistic process in a gun.

It is assumed that the gun is a right circular cylinder (i.e., the chamber and bore diameter are

equal) closed at one end by the breech. It is also assumed that prior to the start of projectile

motion, the propellant is instantaneously burned, such that the chamber i. initially filled with a

quiescent gas of uniform pressure, density, and temperature.* The gas Is assumed to b3

inviscid and heat loss to the walls is neglected, such that the flow is isentropic.

At time t = 0, the initial pressure and temperature distributions (as in the case of the

Lagrange gradient model), as well as the initial density distribution of the Pidduck-Kent

solution are nonuniform, decreasing monotonically from the breech to the base of the

projectile. Fixed gradients (i.e., distributions) of system properties throughout tie interior

ballistic process are an inherent characteristic of gradient models. These nonequilibrium initial

distributions are physically unrealistic, but the spatial averages of these distributions must be

consistent with the initial equilibrium conditions of the Lagrange problem. However, as

demonstrated computationally in this work, for finite charge-to-mass ratios, the wave dynamic

solution appears to approach the special solution for large projectile travel, as has been

traditionally assumed.

In this Appendix, a detailed development of the Pidduck-Kent gradient model is presented.

This derivation follows closely that of Vinti and Kravitz (1949). However, the notation is

modified slightly for clarity.

Although the Lagrange and Pidduck-Kent gradient models arise in the solution of an idealized problem, they are

routinely applied in the simulation of real gun systems. In such cases, the gas is replaced by a 'fluid" consisting
of a mixture of the combustion gas and burning solid propellant grains. The density of this fluid is based on the
combined masses of the gas and solid phases.
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A Lagrangian formulation is used in the development of the Pidduck-Kent gradient model.

The gas column between the breech and the projectile base is initially divided along the axial

direction into a very large number of thin, disk-shaped elements. A disk may expand (or

contract) axially, but the mass of gas in each disk is constant (i.e., there is no flow of gas

between adjacent disks). (Eventually, the number of disks will be permitted to become infinite,

[i.e., the thickness of the disks will be allowed to approach zero] such that the solution is

continuous.) The thermodynamic quantities for the gas (i.e., pressure, density, etc.) are

assumed to be uniform within each element, but are assumed to vary from element to element

in the axial direction. Let x be defined as the distance of the midpoint of a given gas element

from the breech and let y be the position of the projectile base along the barrel with respect to

the breech at some arbitrary time, t, as shown in Figure B-1. We define

x (t = 0) (B-)

where the subscript "0" denotes the value of a given quantity at t = 0. The gas is assumed to

obey the Nobel-Able equation of state, such that for a gas element initially located at x.

POo(XO [ O) - j= RTo(xo,0) , (B-2)

where Po(xo,O) is the pressure of the gas in the element located at x. at t = 0, po(xO) is the

gas density, and To(xo,O) is the gas temperature. As is implied by Eq. B-2, the gas covolume,

specific heats, impetus, etc. are assumed to be constants for all elements from the breech to

the projectile base. As in the development of the Lagrange gradient model, space mean

thermodynamic quantities are defined as spatial averages on [0,A and, for consistency, the

initial values of these space mean quantities must correspond to the uniform initial properties

of the gas in the Lagrange problem. This will be addressed in more detail later.

As the projectile accelerates down the barrel, each gas element is assumed to expand

isentropically,
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Figure B-1. Gas Column Between the Breech and the Projectile Base.

PP(xoot[ PO (o,' 0) - , K(xo) (B-3)

where the adiabatic constant K(xo) is a function of the initial position of the given gas element.

In order to make the problem more tractable, it is assumed that all gas elements follow the

same adiabatic, K, such that

P(XO , t ) T] K. (B-4)

Consider now an element of gas initially located at xo with thickness Axo such that the
mass of the gas in the element is p(xo,0) AB Ax., where AB is the cross-sectional area of the

bore. At some later time, t, the gas element will have moved to a position x(xo, 0 and will

have expanded such that its thickness is Ax(xo,t as shown in Figure B-2. Taking the limit as

AX(Xo,o approaches zero, the continuity equation for this gas element is then

Po(Xo,0) dxo - p(xo,t)dx(xot) (B-5)

and the equation of motion is
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Figure B-2. Evolution of a Gas Element From Time t 0 to Time t.

P X, 2 X(Xo, t) a P(xo.t)
p(Xo,t (0 ,t -- dPx,)(B-6)

aot2  ax

which are the continuity and momentum equations in a Lagrangian frame of reference.

Following Vinti and Kravitz (1949), we introduce a new variable

Z(Xo,t) = X(Xo,t) - TJo PO(xo 0 0)dxo , (B-7)

such that

a Z(Xo, t) a x(Xo, t)z - - "npo(xo.O), (6-8)
a Xo atxo

and

z(x 0 ,t)= ax(x°'t) (B-9)
at at
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Rewriting the continuity equation (Eq. B-5)

DX(xo,t) - p0(xoO) (B-j1)
o7x 0  P(xo,t)

and substituting in Eq. B-8, we have

a z(x , t)____

x o_0 = P °(x °°) p ( -(X0 
(B-11)

We now define

1 ]-
W(xt) P(X,t) I (-12)

such that Eq. B-4 becomes

P(xo,t) = K[W(xo,t)]' (B-13)

and Eq. B-11 becomes

az(x0,t) = po(xo,O)[W(xo,t)]' - (Br14)

3x 0

Using Eq. B-9, B-10, and B-13, the equation of motion can be rewritten as

a2 z(xo,t) K D[W(xo,t)](

at 2  po(xo,0) axo
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where we have made use of

aP(xot) aP(xo,t) axo p(xo,t) aP(xo,t (8-16)ax axo 8x po(xo,0) -7xo0

We now attempt a solution of Eq. B-15 by separation of variables assuming a solution of

the form

Z(xot) = f(xo)'D(t). (8-17)

At t=O,

Z(Xo,O) = f(Xo)cD(O)= xo-lf po(x 1 ,oO)dxo ](D(O) (B-18)

such that

f(xO) = X0-Tfo~nx()Po0(x 0,) dx08-9

and

0(0) = I (B-20)

Substituting in Eq. B-14, we obtain

az(xo, t) df(x0 ) D(t) -po(Xo,O)[W(xot)

axo dx

dr(Xo)
and using Eq. B-19 to evaluate d we have

dxo
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[1 - O rp(X0,O) ]c?(t po(xo),O) [W(XO' t)] -

or, using Eq. B-12 with W,(x,, 0) =- 4x,, 0) to emphasize the initial condition,

[W(xo~t)]1' =[WO(xo,0)J'10(t) . (B-21)

Using Eq. B-17 arnd B-21 in Eq. B-15, we have

f (x0 ) K2 t - KY a[IWO (X0 ,0)I (B-22)

dt2  p0(x0,0) x

and separating variabies, we obtain

[(~tlyd2,() B K -[OxOOF (8-23)___ _______

dt2  f(xO) P0 (X0,0) a (-23

where B is the constant of separation. Consider now

-yK[W 0 (x010)]T' aWO(xO.0) B,(-4

f(xO) P0 (X0 -0) - B(824

where

a WO(x0 , 0) a WO (x0, 0) d f(x0) a WO(xo 0)~

ax0  a t(x0) dxO a ft r,) -lp(o J, (-5

such that

- 7K[W 0 (x0,0)]1-2 aW0 (x0,0)

f(xO) a f(x0)

35



or

[Wo(xo.O)]^,-2 dWo(xo.O) = B f(xo)df(xo) . (B-26)

yK

Noting that f(O) = 0 and integrating, we obtain

-[Wo(xoO)],- _- [Wo(O,0)Iy 1-= - B(y - 1) ff(xo)1 2,2KI'

or
1

Wo(xo,0) = Wo(0,0)[1 - af2(xo)J-• (1-27)

where

a = B(y - 1) (B-28)
2Ky[fWo(0, 0)]('-'

The total mass of propelling gas charge in the chamber, C, is given by

C z A,9 /o ,xJ0) dx' (B-29)

where yo is the initial position of the pose of the projectile. Rewriting Eq. B-29 in terms of

4Xo), we have

isAB/(YO)p(x/0) dAf(YO) po(XO ,0) df(x• ), (g-30)

c fo O oxo 0 - df _x,()df(x0 I) 1POX/0

where we have again used Eq. B-19 to evaluate df(xo)/dxo. Noting that

po(xo,0) 1 - m W0(X0 ,0)

1 - Ilpo(xo,0) p0(X0,0)
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defining

fb= f(yo) = yo-rqCIAB (B-31)

and using Eq. B-27, we obtain

c WO (o,0 fo)f'b [1 - af2(Xo] df(xo , (B-32)

Defining

f2ao afb (B-33)

and

fl(x() =fX) (B-34)

such that

M= 0, (B-35)

J.(Yo) = 1 , (8-36)

and

df(xo) = fb d (xo) , (8-37)

Eq. B-32 becomes

C- A1fb Wo(O,0) f'(1 - ao g2(Xo))f dg(xo), (8-38)

where n Is the polytropic index. Vinti and Kravitz (1949) have written Eq. B-38 as

C - ABfb Wo(O,0) S(n,ao) (B-39)
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where

S(n,ao) (I - ao±2(xo))flIo(xo). (B-40)

It is convenient to rewrite Eq. B-40 at this point. Let

q(g) a ao A2 (x0)

such that

dg.(xO)= dq(g)
2doq(p.)

Substituting in Eq. B-40, we obtain

1

S(n,ao) = _ ...Jfooq•.)-2(1 - q(L.))ndq(g) (B-41)

which gives us

S(n,ao) = 1 Bao( /n + 1 2 F, n, 1.i;;ao (B-42)

11.3
where Ba (-, n + 1 ) is the incomplete beta function and 2 F1 (-n, I.;,..;ao) is Gauss'

hypergeometric function. Eq. B-42 will prove useful later in our development of the

Pidduck-Kent gradient model.

Eq. B-40 could be utilized to calculate the parameter a. given a detailed description of the

initial state of the system. However, Vinti and Kravitz (1949) have developed a more general

equation from which ao can be determined. Note that at the base o, the projectile, the

equation of motion becomes
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a2 Z(yo,t) PbAB

r t2 M

where Mis the projectile mass and P. is the base pressure, or, using Eq. B-17,

fbd2o)(t) PbAB (-3

dt 2  M

where P(yo, a) P., Using Eq. B-13 and B-21, we have

Pb - K [ Wo (yo,0)]ly [(D(t)]-y'

such that

fb d2cD(t) =ABK [W0 (yo,O)]T [4(t)"I1' (B-44)

dt 2  M

Separating variables we obtain

[¢,(t)]T d2c1(t) B = AB K O(YO.0)] (B-45)
dt 2  Mfb

where B is the constant of separation introduced in Eq. B-23. Using Eq. B-28 and B-33, we

have
2 Kaoy ABK
2 _ 1)yf2 [Wo(O,0)]7-l = B = -b [Wo(Yo.0)]7

(y- 1)4 M fb

or

2yaoM ABfbwO( o[ o
y WO (0,0)J
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which, with the use of Eq. B-27 and B-33, becomes

2ya M _ ABfbWo(O,O)[I - aOJ-' (B-46)
"7-1

Multiplying both sides of Eq. B-46 by S(n,ao) and using Eq. B-39, we obtain

2y C2"/ao(1 - ao) ao) = E , (B-47)"

which can be used to calculate the parameter ao given only the ratio of specific heats of the

gas and the propelling charge to projectile mass ratio, C/M.

Ratio of Breech to Base Pressure

The determination of the ratio of breech pressure to projectile bass pressure is now

straightforward. Using Eq. B-27 and B-33, we have

1

Wo(yc,0) = Wo(0,0)[1 - ao (8-48)

or, dividing both sides by •(t) and using Eq. B-21,

W(Yo,t) = W(Ot) [1 - ao]T''. (B-49)

We now make use of Eq. B-13 to obtain

-7'
P(Yot) - -ao [1 - ao ]-(n+) (B-50)
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which demonstrates that at all times during gas expansion the ratio of breech to projectile

base pressure is a constant dependent on y and a0.

Space Mean Pressure, Density, and Temperature

As noted earlier, space mean thermodynamic quantities are defined as spatial averages

on [0,y] and, for consistency, the initial values of these quantities must correspond to the
uniform initial state of the gas in the Lagrange problem. As a first steo, we write the equations

for the spatial distributions of pressure, temperature, and density in the gas. From Eq. B-12,

B-13, B-21, B-27, B-33, and B-34, we have

p(X1o, t) - = - - "n1i - aoi±2Xohf'lzt), (B51)

P xo, t) oPO(0)[1 - a oa2(Xo)]f [[D(t) Y- (B-52)

and,

T(xo,t) = To(0,0) [1 - aol.2(Xo)] [0(t)]'-I . (B-53)

Consider first the gas density. We rewrite Eq. B-51 in the form

W(xo,t) 0 Wo(O,O) [0 - ao A 2(xo)]f n•(t) 1  (8-54)

Performing a spatial average over 0 _< ;, < 1, we obtain

W(M- Wo(OO)[((t)]- fo' [f - ao.12(Xo)] "dl(xo)

or, using Eq. B-40,

W(t) = Wo(0,0)[•(t- 1 F 2 -, .; aoj. (B-55)
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This result can also be obtained from Eq. B-7 and B-17,

z(yot) --,.(,) = y(, Y - /f Yo 0)o(xoo)dx' - y(t) - Cri/A 8  (B-56)

where we have noted that x(y0 , = y(t) is the position of the projectile base as a function of

time. Since the average gas density, p(t), is the gas mass divided by the gas volume,

fb 4 '(t) =A -1 (B-57)

where y(t) is the position of the projectile base at some time, t. after the start of projectile

motion. Rearranging and using Eq. B-39 and B-42, we have

1 ABfb = D(t) (B-58)

or,

w(f) -, wo(o,o)[.(t)4 2F, -n, I ; ,ao •859

If we approach this problem in a slightly different manner using Eq. B-17 and 8-31, we obtain

z( ,t) fb(P(t) = (Yo - iC/A8 )4•(t)

or,

t A - TI,(t).
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Again rearranging and using Eq. B-39 and B-42, we have

= ABfb,• - 11 ¢0 ( t) ,,( t )

or, using Eq. B-12

W(0)['(t)]-1= Wo(CO)[4M(t)]" 1 
2 F (n, 13;;ao (B-60)

which, with Eq. B-59, gives us

-W- -= [TW(o-' (t. (B-61)

Thus, the spatial average of W(t) which is a function of the gas density, has the same time

dependence as W(x0 , t for each individual gas element, which is given by Eq. B-21. This

result might well have been anticipated as a result of the assumption that all gas elements

follow the same adiabatic.

We now considoe the spatial average of the gas temperature, which will be defined in

terms of the internal energy of the gas, i.e.,

Ej (t) =C cT T(t) (B-62)

where Ei(t) is the internal energy of the gas at any time, t, and cv is the specific heat at

constant volume. Since energy, like mass, is an extensive quantity, we have, using Eq. B-29,

Ei(t) = ABC, JY(t) T(xo,t) p(xo,t) dx(xo,t) (B-63)

where the integration is now over the gas column at some arbitrary time, t. We first use

Eq. B-7 to change variables

z(xo.t) -x(x0,t) - I fxo P(xO0dx,
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where, from Eq. B-56,

Zb s Z(yo,t) =y(t) - ilC/Ab.

Using Eq. -10 in B-11, we have

dx(xo,t) [1 - Tlp(xot)]- dz(xo,t) (B-64)

such that Eq. B-63 becomes

E1(t) - ABc, f.ob T(xo,t) - TI dz(xo, t) . (1-65)

We now define a new variable

z(x,t) z(Xo 0,t) f(Xo)Z'(t) f(Xo)ti(xo) = __ - __ _ = (B-66)

Z(Yot) Zb f(Yo) (t) (0 ft

which is identical to Eq. B-34, our original definition of g.(Xo). We now note that

dz(xO, t) = Zbdg(xo) = fb (D( t) dg.(xo) (8-67)

where Eq. B-63 and Eq. --65 a,-e taken at a fixed time, t, and thus

M= 0,

and

(Y) 1

as before. Using Eq. B-51, B-53, and B-67 in Eq. 8-65, we obtain
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Ei(t) =ABCv To(OO)[P(OO) - I'D[MI(t)]Zb f0 [1- ao.2(Xo)] dl±(Xo) (8-68)

or, using Eq. B-17, B-31, and B-40,

Ei(t) = cv To(OO,)O) 1fb 2 Fl 1, 1(3 11. 3 ;a 0 )fZ(t)J '.P (0 0) 2~f 211(n-1••;o[()IY

Using Eq. B-39 and B-42, we note that

Aafb p(OO) - ] =)(B-69)
P2F1 (-n,2 F, 1 ., ao)

such that Eq. B-68 becomes

2 Fl (-n - 1, 1.3

E1(t) CcTo (O,O) [0(t)]113 1 (B-70)1 3
2 F 1 (-n, • .; .;ao )

and, using Eq. B-62, we obtain the space mean temperature

2Fl(_n _ f 1 1 3 o

T(t) =To (O,O) [•(t)] 1 - 1 23 °)• (B-71)
2 Fl (-n,-,.; ao)

or, using Eq. B-53, and noting that ji(O) = 0,
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2Fl (-n - 1, 1.;3.;a

T(t)•= T (0, t) - f aY (B-72)1.3

2 F1 (-n, 1 ; ao)

In order to determine the space mean pressure, we note that

P(t) ~TIj R T~tT (B-73)

or, using Eq. B-12,

P(t) = R T(t) W(t) . (B-74)

Combining Eq. B-55 and B-72 and using Eq. B-21, we obtain

~1.3

P(t) = RT(0,t) W(O,t) 2 F1 (-n- 1,.-'l 3ac)

or

T(0 P(0,t) 2 Fl(-n - ,. . ;ao) . (B-75)

Now we divide Eq. R-75 by P(yo,o and use Eq. B-50 to obtain

P(Yot - (1 - ao) -(~ 2 Fl(-n - 1,1 ;.3.;ao) . (8-76)

From Eq. B-47, we have

(1- ao)'n+l) 1 3 (B-77)
2(n + 1)ao 2 F1 (-n,.;.,a. )
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which in Eq. B-76 gives us

2 F, (-n - 11;3; o
P(t) E 2 2 (B-78)

P(yo,t) 2(n + 1 )ao 2Fl ( 13 I""2";a°

It can be shown that (see Appendix C)

3 .1 2ao(n + 1) 3.52 F1 ( -n - 1,1 .. ;ao) = (1 - ao)' + 2 + 1)-79)
3 2 F1 (-n, ;-. .,;ao) (8-79)

23 2 2

or, using Eq. B-77

1 .3 2(n+ 1)a 0  F( 1.3.
2 Fl(-n - 1, 1 3;ao) 2= n+ )a 2 F,(-n,_ ,.3,ao); a -n - (B-80)

+ 2a(n+31) 2 F1 (-n,- 3-5a o )

which, in Eq. B-78, gives us

2 Fl (-n, ; ao)P3t) 1 2 2 (B-81)

P(Yo,t) 3 2 Fl( -n,2 1 .;ao)

or

P1 + E (B-82)
P(Y, t)0

where

1 1 2 Fl (-n 3 5 a)
21 (B-83)

2 F1 (-n, 3 ;a 0 )
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Noting that

1.3
2 F1 (-n, 1.,.3 ; ao)

is real and finite on 0 < ao < 1 for n > 1 of practical interest, we see from Eq. B-47 that aq = 0

corresponds to e = 0 and that a0 = 1 corresponds to e --) c. Using the definition of the

Gauss' hypergeometric function (see Appendix C) we see from Eq. B-83 that 5 = 3 for

e = ao = 0 (as expected) and 8 = 2n + 3 for ao = 1. Thus, in the limit of zero C/M the

Pidduck-Kent solution reduces to that of Lagrange.

As is also demonstrated in Appendix C, a relationship can be derived among the

parameters a., E, n, and 3,

1 1 1 _ 2(n+ 1) (-84)
-5 2n+3

which can be used to determine 5 for a given r and n once a0 has been calculated. For smail

e, it is easily shown from Eq. B-84 that a0 approaches E12(n + 1).

Proiectile Velocity

The velocity of an element of gas is given by Eq. B-9

aX(Xo,t) aZ(Xo,t)

at a t

and, using Eq. B-17, we obtain

U(Xo, t) a X(Xo.t) = f(XO) dD(t) (B-85)

at dt

from Eq. B-23, we have

d 2 0(t) B[cI(t)]Y. (8-86)

dt 2
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We now define

"T(t) a dD(t)
dt

such that Eq. B-86 can be rewritten in the form

d 2 D(t) _ dP(t) d(t(t) Pf'(t) d"(t) _ B(qD(t)].y

dt 2  d'I(t) dt dD(t)

which, upon integrating with respect to D(t) and rioting that 0(0) = 1, gives us

[t = (d(t) dt 2 = -2 {2 1 -[fD(t)]('-} (B-87)

and from Eq. B-85

u 2 (xo, t) [f(xo)] 2 2 { - [(t)] -(y-) (B-88)

From Eq. B-28 and B-33, we have

B2 [Wo (0,0)]7'-l (B-89)(-,- 1)f,

where, from Eq. B-13,

K= Po(0,0)[ W0(O,0)] -Y

such that

B= 2 PPo(0,0)1 WO( 0,0)1

or

B 2ya= RTo(OO) (B-90)
(7 - 1 )f1
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which gives us

u 2 (Xot) 4yRT°(00) aog 2 (Xo) {i - [2(t)--1)} (B-91)
(y- 1)2

At the projectile base, .(yo) 1, such that

u 2 (yo.t) = 4yRT0 (00) ao{1 - [((t) (B-92)

(y- 1)2

If we now use Eq. B-61 to obtain an expression for 0(t), we have

1= W(0) = pt) = y(t) - T C/AI 
(B_93)

WM 1- - I Yo - T1 CIAB

and defining the expansion ratio* of the gas as

y(t) - 11 C/AB
Et = y(t) (B-94)Yo - 1 /A

we have for the projectile velocity

u(yo, t, 4,yRTO0(,O) aoi~J-](B-95)(-1)2 ao1 - )yB-5

Expansion ratio is usualiy defined in terms of initial chamber length, It, and projectile travel,
Xp such that,

f _ _xp + to - 71CIA L3 Xp + to(1 -1Po)

to - nCIAB  to (1 -lPo)
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in the form presented by Siegel (1979). We now use Eq. B-72 to evaluate T(0,0) in terms of

the initial energy of the gas. For t = 0, we have

S2 F, ( -n - 1, 1 .3; o

T(O) = To(0,0) 2 2 (B-96)

2 F1 (-n,l ,.; ., ao)

which, using Eq. B-78 and B-80, gives us

or

To(0,C) = T(O)"-"• 1 (8-97)
1+ _ 2(n + 1)ao

Substituting Eq. B-97 in Eq. B-95 and noting that

R T(O) = Ei(O) _Eo (B-98)

the initial specific internal energy of the gas, and

27 2(n + 1) ,

we obtain

u 2 (yo, t) 2 1 -f ](-99)
U ~ +e e
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which is solution to the preburned propellant, nonideal gas gun assuming the Pidduck-Kent

gradient model, which is discussed in Appendix E. In the limit of very large projectile travel,

Eq. B-95 becomes

2 4yRTo(0,0) ao (B-10)Up = (B-100)
(y-1 )2

which, using Eq. B-97 and B-98, gives us

4yRT(0) ( E 1 (B-101)uP (y 1)2 ( e 2 (n1+ I)

It has been generally supposed that the Pidduck-Kent solution of the Lagrange problem

approaches the wave dynamic solution at sufficiently large projectile travel. Corner (1950) has

developed an expression of the form of Eq. B-100 for the maximum possible velocity for the

Pidduck-Kent gradient model for the case of infinite C/M. Recalling that a) = 1 for e --4 -, we

have
1

2
Umax - - 1 (yRT 0(0'0))2 , (8-102)

which is identical in form to the escape velocity obiained in the characteristic solution of the

Lagrange problem. However, in the Lagrange problem the initial gas pressure, temperature

and density are uniform throughout the chamber. Thus, in the initial, physical state of the gas,

the temperature at the breech and the space mean temperature are equivalent. In the

Pidduck-Kent solution, the initial pressure, density, and temperature distributions decrease

monotonically from the breech to the base of the projectile, a physically unrealistic initial state

for the system. Thus, the space mean temperature, from which the specific internal energy of

the gas Is determined, is lower than the initial breech temperature. Therefore, for equivalent

.as into,nal specific energies, the Pidduck-Kent solution results in a maximum (escape)

velocity greater than that obtained from the characteristic solution of the Lagrange problem for

infinite C/M and infinite travel. From Eq. B-101 we obtain
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Uma 2 ( -RT--) 2n + 3 (B-1 03)
u Yi =2(n + 1)

or

P-K r3y -1-K 2 uIscape (B-104)

Comer (1950) has mistakenly equated the breech temperature in Eq. B-102 with the initial

temperature of the Lagrange problem and then concluded that, at least for infinite C/M, the
Pidduck-Kent and wave dynamic solutions yie!d the same maximum velocity. As

demonstrated here, the Pidduck-Kent maximum velocity is antually somewhat higher than the

escape velocity for y> 1. This difference is about 8% for 7 = 1.2, 14% for y = 1.4, and 20%
for y = 1.667. It would appear that, at least for the infinite C/M case, the Pidduck-Kent

solution does not approach the wave dynamic solution at large projectile travel, as has been

trr.ditionally assumed. However, as shown in the comparisons of calculated trajectories for
finite C/M, the Pidduck-Kent solution does appear to approach the wave dynamic solution at

sufficiently large projectile travel.

Gas Kinetic Energy

The kinetic energy of the propelling gas at an arbitrary time, t, is defined by

1EA fY.,Mt P (X0, t) AB dx(xo, t) . (B-105)

Using Eq. B-64, B-66, 0-67, and B-85 we obtain

KEGAS= 1 ABfbD(t) o t)[ t) ( 81 dg.(xo) (8-106)
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Now, using Eq. B-12, B-51 and B-85, we have

KEGAS-- ABfb'D(t)[f&•P2) 2 W 0(O0) [((tf1  .0[1 -a0 .2(xO)]" j2(x 0)dg(xO) (B-107)

or

KEGAs 1 2 F 1 (-n, .. ,a0 ) . (B-108)

Noting that

fb dc(t) = u(Yo,t)
dt

and from Eq. B-39

ABfb Wo(0,0) - C
2 Fl (-n, I•,.• ; 3 ao )

we have

3.5
2Fl (-n. ,- 5 ao )

KEGAs C u2(yo,t) 22
1 3

2Fl (-n, -1 ,3• ao )

(8-109)

which, using Eq. B-83, gives us

KEGAS = -KEpoj (B-110)

and

KETOTAL = 1 +I KEPRoJ.

54



Evaluation of the Function f(xL0 :

The equations developed thus far are adequate for solution for the interior ballistic problem

to determine projectile velocity as a function of travel. In addition, the breech, projectile base,

and space mean values of the thermodynamic functions (i.e., pressure, temperature, etc.)

can be calculated as functions of projectile trave!. Given the values of these functions at

the breech prior to the start of projectile motion, Eq. B-51-B-53 could then be used to

evaluate the thermodynamic functions at any arbitrary position along the barrel and, thus, the

spatial distributicn of the functions, for any given projectile travel. However, Eq.

B-51-B-53 express the thermodynamic functions in terms of a dimensionless variable g.(xo)

and it is, therefore, necýessary to determine the relationship between xo and g(xo) if we wish to

investigate the behavior of spatial variation of these functions in the Pidduck-Kent solution.

The dimensionless function .(xo) is defined by Eq. B-34,

f( XO)
g (xO) = fx°, (8-34)fb

where

f(X0) =O - l 1 XOP0 0(x ) dx (B-19)

and

fb a f(yo) - Yo - n CIAB (B-31)

such that

,[p 0oxO O'dx]
(Xo)= 1 [xo - T,1f. po(xo 0)dx (8-112)

We must now evaluate the integral, C(xo),

C(xo) AB fOp(xo )dxo (8-113)
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such that

A(xO) = y- 11 C(xo)/AB (B-114)
-yo -Ti C/A 89

where C(xo) is simply the mass of propelling gas between the breech and xo. We note that

g(0) = 0 and g.Yo) = 1, as before. The integral C(xo) can now be evaluated in a manner

analogous to the integral in Eq. B-29. Recall that

df(xo)
O . 1 - 11Po(X 0,0)dxo

such that

dx•
CxOx 0 Af fIOx 0)ddf / /c(Xo/ = AB0 fo o -'°°'0

~ p0( 0 .0)df(x0)AJoo 0 x ,d~~

Using Eq. B-27, we cbtain

C~0 A WO AW(0,0) fI(X0) 1i _ af2(Xc1)]T""df(x')

which, with Eq. 8-33, B-34, and B-37, becomes

C(xo) AafbWo(0,0) jI±(xo) [1 - ao(1(Xo))2] ndg(xo). (B-115)

Now, let

q(g.) -aog.2(Xo,

such that

11( -

dg (xo ) ao q(.)) 2 dq(gi)
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and

q(O) 0O.

Substituting, we obtain

C(x0) ~A a. o(O-O) qgj±) 2(1 (B-1 16

or, using Eq. C-17, we have

C(x0) A Bfb Wo (0,0) g (xO) {1aolt(g ) . fa2 ±(x q(p,) 2-( q(p)fq(}

or

C(x0 ) A j3ftWO (0,0) 1; (x0) 22 F1(n,-)ao (B-1 17)

Using Eq. 8- 117 in Eq. 8-1 14 and rearranging terms, we obtain

XO1.L(XO)fb{1 112F1i-... (8-118

which is the desired functional relationship between x. and j.(x.). The numerical evaluation of

this function is discussed in Appendix D.

Summary

The fundamental assumption of the Pidduck-Kent gradient model is that all elements of

gas in a Lagrange gun expand along the same adiabatic (K) such that

PO (x0,O) ____- =K (B-2)

57



which is rewritten by defining Wo(xo,O) such that

Po(xo,O) K[W(xo,O)]13

A new variable i, introduced

z(Xo,t) = X(Xo,t) 0 11 fo°Po(Xl,O)dxI= f(xo) (D t) (B-7), (B-l

and a solution of the momentum equation is attempted by separation of variables. An

expression for the total mass of propelling gas in the system is obtained by integrating the gas

density distribution over the length of the chamber,

C=ABfbWO(O,O) 2 1 3 -n,1)13I '~f 2"( 0 2F- -; a° ) (B-39), (B-42

where fb -ýyo), n is the polytropic index,

and ao is a parameter which must be determined in order to satisfy this relation. After some

manipulation, a more basic relation is found,

2 nao( 1 -ao) -(n~l) 2 F(-. 3 a)e B42n0  0 i~) 2 F1(-nl,.•,ao) = £ (8-47

where F is the gas propelling charge to projectile mass ratio.

It is shown than each element of gas evolves in time according to the relation

[ W(xo5t) (8-21
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and, more importantly, that the spatial average of W(x,, t), which is a function of the gas

density, evolves in time in an identical manner

[ V(t)]- = [ ]-(1  (t) (B-61)

The ratio of the breech pressure to projectile base pressure is found to be

P(0,t) - [1 - ao]- 1) (B-50)
P(Yo, t)

and the ratio of the space mean pressure to projectile base pressure is

P(t) - 1 , -(B-80)
P(Yo't 0

where

3 5
-,2 F1  ao

12 (B-81)
5 3 1.32 F 1 ( -n , - , - ;ao )

2 2

We note that for e = 0, 5 = 3 such that in the limit of zero C/M, the Pidduck-Kent special

solution reduces to that of Lagrange. We also note that in the limit of infinite C/M, 5 = 2 n + 3.

A relationship among the parameters, ao, z, n, and 8, which is useful for calculating 8, is

presented,

1_ 1 1a- 2 (n +1). (B-84)

5 2n+3 ao J

An expression for the space mean gas temperature is also presented

2 F (-n - 1,.,. 3 ;)ao
T(t) = T(0,t) - 1.3

2 F1 (-n, 1• ,..3 ao)

= T(0,t) 2( + 1) 1 + F) (B-72), (8-97)
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The gas kinetic energy is found to be

shhKEGAS = KEppoj (B-1 10)
\7E

S~such that

KETOTAL= (i + KEpRoJ, (8-111)

which are easily seen to reduce to the Lagrange result in the limit of zero C/M.

The projectile velocity as a function of expansion ratio is determined to be

U2 (YO,) E- 2 Ej j (8-99)
1+1

which is the solution of the preburned propellant, nonideal gas gun problem as can be

obtained direcly from energy considerations. Finally, it is shown that the maximum projectile

velocity obtained from the Pidduck-Kent solution of the infinite travel, infinite C/M Lagrange

problam is given by

P-K F3y - 1 1 [2 1~l~ - 7~
Umax = [ J"i -1 (-yRT(o)-)' 3y U1 cp (8-103, 8-104)

where Uescape is the maximum velocity obtained in the exact solution of this problem.
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APPENDIX C:

DISCUSSION OF INTEGRALS ARISING IN PIDDUCK-KENT
SPECIAL SOLUTION OF THE LAGRANGE PROBLEM
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INTENTIONALLY LEFT BLANK.
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Several integrals arise in the development of the Pidduck-Kent special solution of the

Lagrange ballistic problem which can be related to the Gauss' hypergeometric functions and

incomplete "beta' functions (Arfken 1970; Abramovitz and Stegun). These relationships prove

useful in the derivation of the Pidduck-Kent solution and in determining its limiting behavior.

The integrals of interest are presented in Appendix B in Eq. B-38, B-68, and B-107,

/1 10 (i- o ",2) d4" (C-1)

'- f:(i-a•o±,)n d,1 (0-2)

and

fo aoL fn A, 2 djt. (C-3)

In Eq. C-1, we define a new vanable q such that

q _ao2 (C-4)

1

g. (qlao)"' (C-5)

d 2 - q dq (C-6)

q(o) o (C-7)

q(1) ao (C-8)

The integral in Eq. B-112 defining C(x,) is closely related to and will not be considered separately.
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giving us

1 1

= -ao joJV[1 q]'q Tdq• (c-9)

Similarly, Eq. C-2 and C-3 become

1 11 a r-" [1(C10

and

3 1

1a fO-V L q]nq dq. (C-11)

Gauss' hypergeometric function is defined by (Arfken 1970; Abramovitz and Stegun)

2 F1 (a~b;c;z) = r'(c) Plt_ ct.

r(b)r(c - b) Jotb (1 - t)c-. (1 - tz)-dt, (C-12)

wherb F(c) is the gamma function. For c - b 1,

"(c - b) = r(1) 1 (C-13)

and,

r(c) . r(b + 1) br(b) -b (1-14)
F(b) F(b) F(b)

such that

2 F1 (a,b;b+ 1;z) = b fitb(1 - tz)-adt. (0-15)

We now define a new variable, q = tz, such that

2 F,(a,b;b + 1;z) = 4 zqbl(1 -aqdq
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and, for a -n and z - ao, we obtain

2 F,(-n'b;b + 1; a°)= b abqb-l (1 "qndq (C-1 7)

a
0

which is now in a form which can be used to rewrite I1, 12, and 3 in terms of Gauss

hypergeometric functions. Comparing Eq. C-9 and C-17, we find that

1 1

21 2 F2(-n,. ao) 2 aq,]nq dq (C-18)

and similarly for Eq. C-10 and C-11,

1 1

F= Fl(-n - 1,.,.;ao) =_ao -[ 1 -]+q 2 dq (C-19)

and

3 11 3.5. 1 r- ao. ~ n"d
/3 = I 2F 1 (-n, 2 ,, -,ao) = ao Jo -q]nfdq (0-20)

The incomplete "beta" functions are defined in terms of Gauss' hypergeometric functions by

(Arfken 1970; Abramovitz and Stegun)

b- Ba(b,n + 1) = 2 F1 (,n,b;b . 1 ;ao) (C-21)
ab

such that

1

11 =1ac Bao(,n + 1), (C-22)

65



1ao Bao ,n +2 (C-23)

and

3

1 B'3 " a 3 + . (C-24)

We now Integrate Eq. C-2 by parts to obtain

!1 - a012JIn1 + 2(n + 1)aof 1 11- a2lnt2d , (I-25)

or

2 (1 - ao)n+ + 2(n + 1 )aOl 3 . (C-26)

Alternately, we could proceed by rewriting the integrand in Eq. C-2 to obtain,

/2 = f I [I _ aog12Jfldu. - ao fl( I - a,2n d (C-27)

or

12 = I1 - ao#3 . (0-28)

Equating Eq. C-26 and C-28. we havo

1 - ao3=(1- ao)n+ + 2(n, 1)a 0 l3 , (C-29)

which can be rewritten as

S(1 -ao)n+ (C-30)

2n +3 o ao

From Eq. B-47, we have

(1- ao)n+1 - 2(n + = 1)ao/ (C-31)
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and substituting in Eq. C-30, we obtain

2n+ " 2(n+ 1)] (-32)

or

2F(-,3 5 o1 2 F1 (-n'-2J;'2;a°) 1 1_2(+)

1 -(n+1) (C-33)
23 ,(n 1 . go) 2n 7+3 To eS2 F1 (-n,l;.;,ao) 2+ a

which is a relationship between two contiguous hypergeometric functions (Arfken 1970;
Abramovitz and Stegun). Using Eq. B-81 to identify the left-hand side of Eq. C-33 as ., we

have

1 _n1 1[_. _ 2(n+ 1)] (0-34)T 2n+3 1 7 .,"

Eq. C-28. also an equation for contiguous functions, can be rewritten as

1 13 3.5

-n , ao) 2 F1 (-n, .. aao)

Following the arguments of Vinti and Kravitz (1949), we first note that, from Eq. B-50,

P(yot) (n+l)
P(o,t) =[1 - (C-36)
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1
it is clear that 0 < ao < 1. Since n =___and y > 1, then n is a real, positive number.'- 1
Thus, if the pressure ratio given in Eq. B-50 is to be a real number and P(o,t) > P(yo,t), it must

follow that 0 < a0 < 1. We also note that the integrals of interest, Eq.s C-1, C-2, and C-3 are

real and finite for n Ž o and 0 _ ao < 1. Then, from Eq. B-47

S2(n + 1)ao(1 - 0-)-(n+"2 F1 (-n, 1 .3;;a 0 ) (C-37)
2•

we see that ao = 0 corresponds to the limit of zero C/M while ao = 1 corresponds to the limit

of infinite C/M. Using Eq. C-15 to evaluate the hypergeometric function for ao = 0, we have

1
2 F1 (a,b;b + 1;0) = bfltb- dt= tbl = 1 . (C-38)

0

For a. 1, the integrals of interest reduce to regular (complete) 'beta" functions, giving us

1n(n + 1)r( (n/12(aO1) 1 B! ln+21)
2 ~2 2

,- + ) 1 , (C-40)
2(n + 1)+ 1 F ((n+I0
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and / Ir(.) n

13a0 1 = B .. ,l~>r(J(n+) 
(-1

(ý ,+J r(n +4
+4) 2)

Recalling that

2 F1 (-n, . 15

1- 1 2  f(n ;ao) 13 (C-42)8 32 F1 (-n, 1,3., ao) 1

we obtain for ao = 0

1 1 (C-43)
8 3

and for ao = 1,

1 (_) 2n 1+ (C-44)

B .B ,n + 1)

This latter relation can be obtained directly from Eq. C-34. However, the zero C/M limit is

shown to be a direct result of the solution, in contrast to the argument used by Vinti and

Kravitz (1949) involving expansion of F in Eq. C-31 in terms of ao and substitution of the result

into Eq. C-34.

The ratio //jI arises in Eq. B-72 relating the space mean gas temperature to the

temperature at the breech. For ao = 1, we obtain

/2(ao -1) (n + 1) 2(n + 1) 2"(C

Ii(ao 1) n+ J 2n+3 1
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which is the factor arising in Eq. B-101 and B-102 relating the maximum velocity from the
Pidduck-Kent solution for the infinite travel, infinite C/M Lagrange gn problem and the escape
velocity obtained from the exact solution of this problem.
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APPENDIX D:

NUMERICAL EVALUATION OF THE PIDDUCK-KENT PARAMETERS
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The evaluation of the Picdluck-Kent parameters, ao and 8, defined by Eq. B-47 (or C-37)

and Eq. B-82,

E, 2(n + 1)ao(1 - ao)-l) 2 F1 ( -n, 3•;ao) (D-1)

and

i 1 _ 1 [1 _2(n + 1) (D-2)
7E - f 2n+3 [a o C

where

2F1 (-n,3 1 - ao R.2 ndL (D-3)

has been considered previously by Vinti and Kravitz (1949) and by Grollman and Baer (1970).

Vinti and Kravitz developed an algebraic expression for 5 as a function of n,

1 1 + F )(i)n C (e,n)P(-) (D-4)
5 2n+3 [1 + C1 (e,n)n

where the coefficients c(e), P(E), and C1 (e,n) are themselves functions of e and n. These

coefficients are tabulated (Vinti and Kravitz 1949) for selected values of e and n such that the

value of the coefficients, and thus, 5 can be determined for arbitrary e (0 :5 E<; 10) and

n (0.5•5 n < 5 [i.e., 1.2 .' y•< 3]) by interpolation. While the computed values of 5 obtained

using the tables of Vinti and Kravitz are quite accurate, this technique is cumbersome and not

well-suited for application in computer simulations. In contrast, Grollman and Baer developed

extensive tables for 8 as a function of c and n, for 0 < e < 20, and 1.2 < y < 1.3, by numerical

integration to obtain E as a function of a. for given n (see Eq. D-1 and D-3) and use of

Eq. D-2 to obtain 5. A least squares fit of the tabulated values nf 8 was then generated using

a fifth order polynomial function of e and y,

5 =3.0 + Z 4•i+ ]E (D-5)
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This expression is easily applied in interior ballistic simulations, and has served as the primary

means for implementation of the Pidduck-Kent gradient model. However, in using Eq. D-5 to

compute 5, errors on the order of a few percent are introduced. Additionally, the range of

applicability of this equation Is limited, particularly in view of the properties of some novel

propellants being conside'ed in conjunction with the electrothermal-chemical gun.

Our objective, then, is to develop a general technique for calculation of the Pidduck-Kent

parameters, ao and 6, which is valid for arbitrary c and 6, and which iS readily applicable in

computer simulations. As a by-product, we also develop techniques to evaluate the other

functions encountered in the Pidduck-Kent solution of the Lagrange problem,

The approach selected to develop a generally applicable method for determination of the

Pidduck-Kent parameters is direct solution of Eq. D-1 for a.. The hypergeometric function

may be expressed as an infinite series of the form,

9 1) r() r(k + 0)r(k + ) Xk-6)9 1WV6X (D-6
r(o)Fr() k-0 F(k + 8) k!

where the series converges fore - N- 4>>0 and Ilx _1. For 0= + 1, the Gauss

hypergeometric function reduces to the incomplete "beta" function for 0 < x < 1 and the

regular (complete) "beta" function for x = 1. For the functions of interest in the Pidduck-Kent

solution, 0 = , + 1 and 4 = -n or - (n + 1) where 0, iy and m are positive numbers such that

0 -141-4 > 0. We also note that x= ao with 0 < ao < 1, such that the Series in Eq. D-6

converges for the values of parameters considered here.

We are generally interested in Gauss hypergeometric functions of the form

F(a +bal) " r (k+1 -b)r(k+a) x k
r(1 - b)r(a) ko F(k + 1 + a) k!. (-7)
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We will now simplify this expression using the properties of the "gamma" function. First, we

note that

I"(a + 1) _ ar(a) - 2 (D-8)
r(a) r(a)

and
dr(k + a) = r(k +a) 1 (0-9)

r(k + 1+ a) (k + a)r(k + a) k + a

We now rewrite Eq. D-7, to obtain

2,=1(1~ ~~ -aa+1;)=1+aT (k + ! - b) xk (-10)
2 F1(l - b~a;a+l1;x) 1 + a r7k+ -bDx

k-i F(1 - b) (k + a)k!(

The ratio of "gamma" functions can be expanded to give us

F(k+ 1 - b) _ 1 {(k - b)(k - b - 1) ...... (1 - b) r(1-b)}
F-(1 - b) -(1 - b)

or

[(k+1 - Ib) (k + 1 - b - j) (D-11)
r(1- b) jl

such that

2F1(1 b,a;a + 1;x) = 1 + 7 1] (k + 1 -, -j) . (D-12)
k-I j- +a)k

Eq. D-1 can now be solved iteratively using the Newton-Raphson technique. We define

1.3

G(ao,n;e) =2(n + )ao(1 -a)-(n+l 2 F1 (-n,.1.;.;ao) - = 0 (D-13)
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such that

a G(ao,n,FO) 1 n + 1
a ao zo 1 -_ao

[O3F1 -n,1 .3 }

+ 2 (n+ 1)ao (I -ao) -(n+l) a2 2"'2", f _F; a°) ( 4
a 0 aa°(0-14)

where

-k1 aok
2 F, -n,. 1,3.ao + E 0k1 ,,[k- n- j) 2k 1 Tk (D-15)

and

a2F1n, 1 .3 k-kkk a:
E____(k-_n_-_ k (D-16)

ol k-1,12 1 k!

An initial estimate for a. is obtained using the Grollman and Baer (1970) formula

(Eq. 0-5) to calculate 8(1) and Eq. D-2 to calculate 4). Successive values of aS) are then

calculated iteratively using the Newton-Raphson equation

a.1) = G(4/), aG(ao,n,e) 1(D-17)
a0  0oG (a-17

until the desired accuracy is achieved.

In order to improve convergence of the infinite series in Eq. D-7 for 0.65 < x < 1.0, we

consider the integral representation of the hypergeometric function.

2 -F(1 b,a;a + 1;x) = a fota- (1 t)b-ldt (D-18)
7a
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Changing variables, we define

q-(1 -t)

such that

dq-- - dt

q(O) = 1

and

q(x) = 1 - x

giving us

2F,(1 -b,a;a + 1;x) a f= . _ -x 1 a1 b1

xa

or

2 -F(1 b,a;a + 1;x) - o q dq- 1 - q(r dq .

_aq a-' - q-f'x1 a'qb dq}

Using Eq. D-18 and rewriting, we have

Xaa 2F,(1 - b,a;a + 1;x) = B(b,a) - ( - (1 - ab;b + 1;1 - X) (D-19)
a b

where B(b,a) is the regular (or complete) "beta' function. Recalling that the incomplete "beta*

function and Gauss hypergeometric function are related by

Bx(a,b) = x 2 F1 (1 - b,a;a + 1;x) (D-20)a

we obtain from Eq. D-19,

Bx(a,b) = B(b,a) - Blx(b,a) (D-21)
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which (Abramovitz and Stegun) we might have used as the starting point to obtain the desired

relation, Eq. D-19. From the symmetry of the *beta" function, i.e.,

B(ab) r(a) r(b) = B(b,a) , (D-22)

r(a + b)

we see that Eq. D-21 can be rewritten as

Bx(a,b) = B(a,b) - Bl-x(b,a) (D-23)

and that B(b,a) could be similarly replaced in Eq. D-19.

Returning now to Eq. D-1 9 for the arguments of interest, we have

1 3 1
2aj 2 F (-n,,.ao n + 1

n- F, ;n+ ;n +2;1'- ao (D-24)

where

r (r'(n)
B - n + 1I= (I)- (D-25)

r(-')= JC(D-26)
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and

2 F1  ;n + 1;n + 2;1 - aoJ 1 k+ljul(. -+--k- -1 2

x n + 1 (1 - ao)k (D-27)

We also require the derivative with respect to ao,

D2'l n+ 1 ;n + 2; 1 - aeJ k/

____________ = -I r k +l-j

n + 1 k(1 - ao)k-1 (D-28)
k+n+l k

Therefore, for a. > 0.65, Eq. D-13 and D-14 become

G(a,n,e) --2(n + 1)ao(1 - ao ) -(n+l) 1 [B(,n + 1)

- n+1 2 F1  ;n + 1,n + 2;1 ao - (0-29)

and

DG(ao,n,e) G l[ 1 n,+ 1 1 1
a ao zý + G °'n • o 1- ao 2 ao

1-a

2(n + l)ao(1- ( ao)-(n+) a (1 ao) n 2 F1 l;n +1;n 2;1 - ao0

1-aoD2 F1 ;n +1;n +2;1 a0J}(-0
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In practice, ao is generally less than 0.5 for the values of e and y of interest. However, we do

utilize this alternate formulation in comparison of ao and 8 calculeod using the other

techniques (Vinti and Kravitz 1949; Grollman and Baer 1970).

The computational technique described above has been implemented in a computer

program, which is presented in Appendix F. This program has been used to calculate ao and

5 for the values of e and n from the tables of Vinti and Kravitz (1949). The results of these

calculations are presented in Tables D-1-D-4, along with corresponding values of ao and 8

obtained using the techniques developed by Vinti and Kravitz (1949) and Grollman and Baer

(1970). Comparing the values of a. and 5 calculated using the techniques presented here

with those of Vinti and Kravitz, we see that they generally agree within 1 part in 105. We note

that Vinti and Kravitz (1949) have estimated that values of ao and 8 calculated from their

tables have an accuracy of 1 part in 6,700 and 1 part in 5,000, respectively. The

convergence criteria for the Newton-Raphson iteration used in our calculations provides an

accuracy of at least 1 part in 105 irn the determination of ao. Therefore, the technique

presented here is at least as accurate as that of Vinti and Kravitz over the range of e and y'

considered. As noted, this technique has been implemented in a computer program,

therefore, our initial objective has been accomplished. We also note that the accuracy of the

Grollman and Baer (1970) formula is somewhat less than that of the other two apprreaches,

varying fromm about 1 part in 300 for charge-to-mass ratios around 3, to about 1 part in 1000

at higher and lower charge-to-mass ratios.

Grollman and Baer (1970) have published tables of the Piddtc':-Kent parameters (5) for

0 < • < 26 in increments of 0.01 and for 1.2 < y:5 1.3 in increme.,,s of 0.01. These results are

based on a numerical integration to obtain e as a function of a. for given n and use of

Eq. D-2 to calculate 5. The values of 5 at the tabulated points we:e obtained by interpolation.

Selected values of 5 from these tables are presented in Tables D-5-D-7, along with

corresponding values of 8 calculated using the least squares fit of Grollman and Baer (1970)

and the technique developed in this work in order to assess the accuracy of the current

computational method for 10 < e: 20. As can be seen from tlhese tables, our values agree

quite well with the tabu!ated values of Grollman and Baer. The accuracy of the Grollman arid

Basr least squares fit is comparable to that noted earlier at lower charge-to-mass ratios.

Finally, we note that the accuracy of the tabulated values of 8 from Grollman and Baer is
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5 parts in 105 (based on the convergence criteria for their numerical integrator) which is

consistent with comparisons to values of 8 obtained using the technique developed in this

work.

As an additional note, we point out other applications of the techniques developed in this

Appendix. In order to calculate xo as a function of g± for 0 g :5 < 1 from Eq. B-1 18, or to

evaluate the other hypergeometric functions arising in the Pidduck-Kent solution (i.e., Eq. C-19

and C-20) we can utilize Eq. 0-12 and D-19.

The computer program used to calculate ao and 5 with the numerical method described

above has been incorporated into the lumped parameter, interior ballistic code, IBHVG2.

IBHVG2 is a standard, well-documented, lB model for solid propellant guns containing the

Grollman and Baer least squares fit for e. The IS code was modified to permit the use of

either the least squares fit or the numerical technique described in this report to determine ao

and 8.

Since the accuracy of the least squares fit decreases with increasing e, a sample problem

of interest with charge-to-mass ratio of 3.003 was examined. A 120-mm gun with 7 perf, JA2

propellant was chosen as a baseline. The values of ao, 5, maximum breech pressure and

muzzle velocity for each case is shown in Table D-1. Three cases are presented: (1) least

squares fit with an optimized web; (2) numeric method using the web determined in (1); and

(3) numeric method with an optimized web.

A comparison of the three cases in Table 0-8 shows that the numeric method gives

approximately a 0.1% difference in maximum breech pressure and a 0.03% difference in

muzzle velocity compared to the least squares fit for calculating 5 for a given, optimized web.

However, if the web is re-optimized, the differences drop to 0.007% in maximum b~eech

pressure and 0.004% in muzzle velocity. Thus, for high charge-to-mass ratios in a regime of

interest (i.e., - 3 in this application) differences in predicted gun performance using fittud or

numerically calculated values for 8 and ao in the Pidduck-Kent gradient are considered

insignificant.
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Table 0-1. Comparison of Pidduck-Kent Parameters for y = 1.2

Vinti and Grollman and Morrison et al.
Kravitz (1949) Baer (1970)

Sao a. 8 a. 6

0.2 0.01557 3.06355 0.01556 3.05887 0.01557 3.06352

0.4 0.02927 3.12164 0.02926 3.11479 0.02927 3.12159

0.6 0.04150 3.17532 0.04149 3.16790 0.04150 3.17517

0.8 0.05255 3.22502 0.05252 3.21837 0.05255 3.22497

1.0 0.06260 3.27150 0.06258 3.26633 0.06260 3.27156

2.0 0.10259 3.46897 0.10264 3.47325 0.10259 3.46887

3.0 0.13184 3.62597 0.13201 3.63614 0.13184 3.62604

4.0 0.15481 3.75762 0.15502 3.76739 0.15481 3.75754

5.0 0.17365 3.87054 0.17381 3.87664 0.17366 3.87099

6.0 0.18963 3.97123 0.18962 3.97115 0.18962 3.97099

7.0 0.2034.3 4.06084 0.20328 4.05609 0.20342 4.06053

8.0 0.21558 4.14194 0.21533 4.13486 0.21557 4.14168

9.0 0.22641 4.21608 0.22616 4.20939 0.22640 4.21593

10.0 0.23616 4.28408 0.23601 4.28047 0.23617 4.28440
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Table D-2. Comparison of Pidduck-Kent Parameters for y = 1.25

Vinti and Grollman and Morrison et al.
Kravitz (1949) Baer(1970)

___ a. 5 a.__

0.2 0.01866 3.06099 0.01866 3.05648 0.01866 3.06097

0.4 0.03505 3.11672 0.03504 3.11009 0.03505 3.11666

0.6 0.04966 3.16816 0.04964 3.16101 0.04966 3.16801

0.8 0.06281 3.21577 0.06279 3.20936 0.06281 3.21572

1.0 0.07477 3.26027 0.07474 3.25529 0.07477 3.26033

2.0 0.12211 3.44893 0.12217 3.45312 0.12211 3.44884

3.0 0.15649 3.59850 0.15670 3.60841 0.15649 -3.59856

4.0 0.18335 3.72355 0.18360 3.73312 0.18334 3.72347

5.0 0.20527 3.83054 0.20546 3.83662 0.20528 3.83098

6.0 0.22378 3.92579 0.22379 3.92591 0.22377 3.92553

7.0 0.23972 4.01030 0.23955 4.00601 0.23971 4.01001

'.0 0.25370 4.08667 0.25342 4.08019 0,25369 4.08644

9.0 0.26612 4.15634 0.26585 4.15033 0.26612 4.15624

10.0 0.27727 4.22015 0.27713 4.21718 0.27729 '.22051
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Table D-3. Comparison of Pidduck-Kent Parameters for y = 1.3333

Vinti and Grollman and Morrison et al.
Kravitz (1949) Baer (1970)

0.2 0.02329 3.05716 0.02328 3.05288 0.02328 3.05713

0.4 0.04368 3.10933 0.04366 3,10306 0.04368 3.10928

0.6 0.06179 3.15745 0.06176 3.15066 0.06179 3.15732

0.8 0.07806 3.20194 0.07802 3.19584 0.07805 3.20190

1.0 0.09281 3.24349 0.09277 3.23872 0.09280 3.24354

2.0 0.15078 3.41909 0.15083 3.42293 0.15077 3.41902

3.0 0.19244 3.55765 0.19267 3,56682 0.19243 3.55772

4.0 0.22471 3.67305 0.22498 3.68175 0.22469 3.67296

5.0 0.25085 3.77136 0.25104 3.77661 0.25085 3.77177

6.0 0.27279 3.85854 0.27275 3.85808 0.27276 3.85837

7.0 0.29158 3.93577 0.29132 3.93091 0.29155 3.93552

8.0 0.30797 4.00526 0.30758 3.99821 0.30794 4.005 10

9.0 0.3224f, 4.06864 0.32207 4,06176 0.32245 4.06849

10.0 0.33545 4.12640 0.33518 4.12228 0.33544 4.12670
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Table D-4. Comparison of Pidduck-Kent Parameters for •y = 1.5

Vinti and Grollman and Morrison et al.

Kravitz (1949) Baer (1970)

_ao 0  ao ao

0.2 0.03097 3.05078 0.03096 3.04690 0.03097 3.05075

0.4 0.05794 3.09705 0.05792 3.09132 0.05794 3.09700

0.6 0.08177 3.13964 0.08174 3.13341 0.08177 3.13954

0.8 0.10307 3.17900 0.10303 3.17329 0.10307 3.17895

1.0 0.12230 3.21565 0.12225 3.21108 0.12230 3.21569

2.0 0.19696 3.36984 0.19702 3.37259 0.19696 3.36978

3.0 0.24966 3.49055 0.24991 3.49745 0.24966 3.49060

4.0 0.28988 3.59030 0.29014 3.59607 0.28988 3.59025

5.0 0.32208 3.67490 0.32217 3.67655 0.32209 3.67514

6.0 0.34879 3.74927 0.34853 3.74497 0.34878 3.74912

7.0 0.37147 3.81492 0.37085 3.80567 0.37145 3.81466

8.0 0.39107 3.87361 0.39020 3.86150 0.39106 3.87348

9.0 0.40829 3.92687 0.40732 3.91406 0.40828 3.92682

10.0 0.42358 3.97536 0.42267 3.96401 0.42360 3.97560
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Table D-5. Comparisons of Pidduck-Kent Parameter 5;
'y= 1.2andy =1.22fore>10.

y= 1.2 __= 1.22

Grollman and Baer (1970) Morrison et al. Grollman and Baer (1970) Morrison el al.

E CALC FIT CALC FIT

10 4.2844 4.2805 4.28440 4.2581 4.2545 4.25808

12 4.4073 4.4115 4.40727 4.3777 4.3824 4.37773

14 4.5153 4.5233 4.51525 4.4828 4.4912 4.48276

16 4.6116 4.6128 4.61164 4.5764 4.5781 4.57642

18 4.6987 4.6886 4.69871 4.6610 4.6516 4.66095

20 4.7781 4.7811 4.77814 4.7380 4.7416 4.73799

Table D-6. Comparisons of Pidduck-Kent Parameter 8;
",' = 1.24 and y= 1.26 for E > 10.

y = 1.24 y = 1.26

Groltman and Baer (1970) Morrison et al. Grollman and Baer (1970) Morrison et al.

SCALC FIT CALC FIT

10 4.2328 4.2294 4.23279 4.2085 4.2051 4.20846

12 4.3474 4.3541 4.34935 4.3221 4.3268 4.32208

14 4.4516 4.4602 4.45157 4.4216 4.4301 4.42161

16 4.5426 4.5446 4.54263 4.5102 4.5121 4.51020

18 4.6248 4.6158 4.62475 4.5900 4.5812 4.59001

20 4.6995 4.7035 4.69952 4.6626 4.6665 4.66264

86



Table D-7. Comparisons of Pidduck-Kent Parameter 5;
y = 1.28 and y -= 1.30 for - > 10.

ny a = 1.28 y= 1.30

Crollman and Baer (1970) Morrison et al. Grollman and Baer (1970) et al
CALC FIT CALC FIT

10 4.1850 4.1816 4.18504 4.1625 4.1588 4.16248

12 4.2958 4.3003 4.29584 4.2706 4.2746 4.27059

14 4.3928 4.4009 4.39?82 4.3651 4.3727 4.36512

16 4.4790 4.4806 4.47904 4.4491 4.4502 4.44909

18 4.5567 4.5476 4.55666 4.5246 4.5151 4.52462

20 4.6272 4.6307 4.62724 4.5932 4.5960 4.59324

Table D-8. Comparison of Influence of Calculating 8 and ao Using Least Squares Fit vs.
Numeric Method on Gun Performance

Max Breech Muzzle
Calculation j ao Pressure Velocity

(MPa) (rn/s)

Fit 3.62239456 0.14475450 690.0536 2461.12
(optimized web)

Numerical method 3.61239195 0.14456433 689.2609 2460.30
(same web) I I _I

Numerical method 3.61239195 0.14456433 690.1069 2461.03
(optimized web) I_
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APPENDIX E:

LIMITING VELOCITY FOR PREBURNED PROPELLANT,
NONIDEAL GAS (PPNIG) GUN
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The statement of the prebumed propellant, nonideal gas (PPNIG) gun problem is identical

to that of the Lagrange ballistic problem. It is assumed that the gun is a right circular cylinder

(i.e., no chambrage) closed at one end by the breech. (Siegel [1979) relaxes this assumption

and treats preburned propellant gun cases with and without chambrage. For our purposes we

consider only the latter.) Prior to the start of projectile motion, the propellant is assumed to be

instantaneously burned, such that the chamber is initially filled with a quiescent gas of uniform

pressure, density, and temperature. The gas is assumed to be inviscid and heat loss to the

walls is neglected, as are losses due to resistive forces (i.e., the flow is assumed to be

isentropic). The solution of this problem can be accomplished either by use of a gradient

model, as in Appendices A and B, or by numerical integration of the equations of motion for

the system. If, however, the objective is to determine a limiting velocity for this problem, it is

assumed that the projectile travel and charge-to-mass ratio (C/M) are permitted to approach

infinity. The solution of the resulting problem is then straightforward.

Characteristic Solution

The characteristic equations for an effectively infinite travel, infinite C/M prehurned

propellant gun is presented by Siegel (1979) for the ideal gas case. An extension to the

nonideal (Nobe:-Abel) gas equation of state is presented, following the development of Siegel.

When the projectile begins to move, a rarefaction wave moves back into the quiescent gas

at the speed of sound, co. If the chamber is sufficiently long, either there will be no wave

reflections from the breech or the reflected wave will not reach the projectile base prior to

muzzle exit. The equation of state of the gas is

Po -T = RTo, (E-1)

the gas internal specific energy is

RTo
Eo ,(E-2)
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and the gas sound speed is

2 YPo -yRTo
co = = (E-3)

Po(1 - lpo) (1 - Tipo) 2""

We note that, consistent with our assumptions regarding the initial state of the system, the

"thermodynamic properties of the gas are uniform throughout the gas such that space mean

and local values of any quantity are equal. Since the gas is assumed to expand isentropically

as a result of projectile motion,

P(xt) Ip(xt- - I K= • (E-4)

The Riemann function, •, is defined by

:ý d P) -c" (E-5) )

where s denotes constant entropy. Since we have assumed the expansion process is

isentropic, this subscript will be dropped. We note that the definition of the sound speed has

been used in Eq. E-5 to relate dP and dp, i.e.,

c2 aP • (E-6)
(a2

Using Eq. E-1, E-3, and E-4, it can be shown that

1 ( "•y+l

Cp = yPo(yR TO) (-lPT 2y (E-7)
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Substituting Eq. E-7 in Eq. E-5 and integrating, we obtain

I
( Po= P°2" f Pdp (E-8)

or

= ___LO [~i~ 1~ (E-9)

From Eq. E-3 we note that
1

"---P c(1 - Tp) = (yRT)"2 (E-10)
cp

such that

21

1- >RT) 2(E-1 1)

The identical result is obtained in the case of an ideal gas, where yR -RT.

The characteristic solulton for the system is

u + =o (E-12)

where u (Po, ý,) 0. It is convenient to evaluate { and ýo using Eq. E-9 which can be
rewritten in the form

-(2.i (-R-)) (E-13)
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such that Eq. E-12 becomes

TO) 1 -(E-14)

or

= - U_ _ u (E-15)PO
2 (yfR T")-2

When th6 gas pressure at the base of the projectile drops to zero, the gas can do no more

work and the projectile has attained the maximum possible velocity or the "escape velocity,"

1

Vescape = 21)(yR TO) 2  (E-)

While the escape velocity does not represent a physically attainable velocity, it does serve as

an upper velocity limit for gas-driven guns.

The relationship between projectile velocity and projectile travel is obtained from the

equation of motion,

Md =PbAB. (E-17)
dt

Evaluating Eq. E-15 at the projectile base and substituting in Eq. E-17, we have

Mdu PA 1 (Y - 1)u
0t B

2 (-yRToJ
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or

12-f
Mu,.du = PoA 1- (,Y- 1)up 7-1  (E-18)

"dx• 1

2 (y/RTo)) J

Integrating, we have

A d f- 1 uf$ du (E-19)

and defining a new variable, z a u1/(./RTo)2, Eq E-19 becomes

PA r - 27

MOBA = 11 y- z z2 dzy

AvfyRT 0 J L 2 2-1)]

which gives us the desired result

2 _' +1 1 UP 1
7-1 '/ 1 2PoABXp _ 2 (yRTo) +2

__ __ _ __ _ __ __ __ __ __ __ __ __ __ __ __ + 1 (E-20)
MyRT1 - up 't-1

29 (y/RTO) •
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We now introduce reduced variables based on those suggested by Siegel (1979)

_= P°ABxp (E-21)

MyRTo

and

2
u= up(7RTo) (E-22)

such that Eq. E-20 becomes

2 y+ 1F1T-1jl
2 - 7P""______=__ _+ 1' (5-23)

We note now that the reduced projectile travel can be rewritten in terms of the projectile C/M,

e, for finite chamber length x.,

7(1 E-24)

x -Y(1 _rIPo) x0

'which makes it possible to relate reduced travel to expansion ratio as defined in

Appendix B

.f = Xp + X0 (1 - iPO) (E-25)

Xo(1 - rlPo)

Substituting Eq. E-24 in Eq. E-25, we obtain,

F.f xp + 1 =YXP + . (E-26)
( '1 -Po) X0
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We also note that the reduced projectile velocity (Eq. E-22) can be rewritten in terms of the

initial, specific internal energy of the gas (EO) to give us

S-Up [ ( 1 ) E o] 2 (E-27)

These equations are used in the text in plots cf ballistic trajectories.

Solution Using Pidduck-Kent Gradiert Model

The Pidduck-Kent solution to the Lagrange ballistic problem (i.e., the p.ojectile veiocity as

a function of gas expansion ratio) is obtained in Appendix B in conjunction with the derivation

of the gradient model. We show in this section that this solution can also be obtained in a

straightforward mranner from the requirement that energy be conserved. The initial, total gas

internal energy is

CRTo
EoC- , (E-28)

the initial space mean pressure is

O-- 1 rl RTo (Ax- 1)E (E-29)tj 9ABxo - Cr1

and the space mean pressure at any projectile travel (xe) is

P'xp (y - 1) E(xp)

AB(xO + xP) - CT1

where the internal energy at xP is obtained by noting that, in the absence of dissipative

mechanisms,

E(xp) - Eo - KEpRJj - KEGAS. (E-31)
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As demonstrated in Appendix B, for the Pidduck-Kent gradient model,

P(x)V = (1+ -.. Pb(xP) (E-32)

and

KEGAS (.jKEpRoJ. (E-33)

Combining these equations, we hava

1~p)E Mu 2  (E+-34)

or

2 E UP- uA xP) (E-35)2b (1, 
2J B X + x ) -

The equation of moticn for the projectile is given by Eq. E-17

M dU = PbA• (E-17)

Using Eq. C-33 in Eq. C-17 and rearranging terms, we have

updp . -yE°)- xE ( x2(1 (E-36)

or
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from which we obtain the desired result

2 2 0 [+ L1J] (E-38)
Up z

where Eo is the initial, specific internal energy of the gas, and

Et xP + xo(1 - 11P 0 ) (E-39)
X0(1 - 7Po)

is the expansion ratio of the gas. In the limit of infinite C/M and infinite expansion ratio

(Eq. E-38) yields the maximum projectile velocity for the Pidduck-Kent solution

Urnax) 2(2n + 3) Eo (E-40)

1
or, recalling that n

71-1

P-K =(3y -1 (2 (Yv
Umax 2y YR . (E-41)

Comparing with Eq. E-16, we see that

1

iiP-K =(3-y - 1 -gea~~ E2max 2 (E-42)

as obtained directly in Appendix B (see Equation B-104) in the derivation of the Pidduck-Kent

solution.

99



INTENTIONALLY LEFT BLANK.

100



APPENDIX F:

"COMPUTER PROGRAM FOR CALCULATION OF
PIDDUCK-KENT PARAMETERS

/
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program pidduck
C
c Pidduck-Kent constants DEL and A0
c Note: Accuracy is poor for charge-to-mass ratio < 1E-03
c Values of DEL and AO are not calculated for EPS = 0
c Iteration fails for EPS < 1 E-05
c 24 March 1991
C
C Converted from BASIC to FORTRAN
c Converter: Caledonia Henry
c Date: 30 Jan 1992
C

dimension a(5), d(5)
data (a(i),i=1,5),(d(i),i=1 ,5)/-.003659837,-.C0693•816,

.0006852334,-.00003094782,.000000529i 406,.3667921 -.03838811,
.003275623, -.0001455872,.000002498742/

PI=4.0*atan(1.0)
C
c Open file for output

open(9,file='pkconst.out')
c
c Input GAMMA and Charge-to-Mass Ratio
C

98 write(6,'(a)') 'Input Gamma and Charge-to-Mass Ratio"
"read(5,*) gain, eps

C
c calculate cn and cnn
c

cn = 1.0/(gam-1.0)
cnn = cn + 1.0

c

c Calculate initial estimate for Delta and AO
c Using Grollman and Baer formula.
a
c Note: Accuracy decreases rapidly for eps > 20
c

del = 3.0
do 100i= 1,5
del = del+(a(i)+d(i)/gam)*(eps**i)

100 continue
c

if(eps.gt.0.0) go to 200
az =0.0
go to 211

c
200 azl = (((2 .0*cn)+3.0)/del)+((2.0*(cn+1.0))/eps)

az = 1.0/azl
a
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211 write(9,'(a)') 'GROLLMAN AND BAER LEAST SQUARES FIT'
write(9,1000) eps, cn, gain, del, az

1000 format(lx,'EPS = ",f8.4," N = ",f8.4," GAMMA = ,f7.4," DEL =
"t9.6,* AO ",f9.6)

c
if(eps.gt.0.0) go to 224
azzz = 0.0
dell = 3.0
go to 338

C
224 if(azJt.0.7) go to 226

az =0.7
C
c if AO > 0.65 then use alternate solution
c

226 if(az.gt.0.65) go to 250
C
c Newton-Raphson iteration for AO <= 0.65
c

228 j=0
azz = az
j = j+1

c

236 call gOglg2le( g2, azz, cn, eps,cnn)
azzz = azz-g2
if (abs(g2).lt.l.E-06) go to 334

C
azz = azzz
if(azz.le.0.65) go to 236
az = azz

' ' C

c Newton-Raphson Iteration for AO > 0.65
c
c First calculate Beta function - B(0.5,CN+1.0)
c

250 w=0.5
gu = sqrt(PI)
w =cn + 1.0
call gamfun(gamma,w)
gv = gamma

266 w=cn+ 1.5
call gamfun(gamma,w)
guv gamma
beta = gu~gv/guv

c
c now proceed with iteration
c

j=0
azz=az
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308 j =j+4,
call gag lg2gt (g2, azz, cn, eps, cnn, beta)
azzz = azz - g2
if (abs(g2) A!t. 1.E-06) go to 334
azz = azzz
if (azz .gt. .65) go to 308
az = azz
go to 228

334 dell = ((1 .0/azzz)-((2.0*(cn+1 .0))/eps))/(2.0*cn+3.0)
dell = 1 .0/dell

338 write (9,'(a)') 'CALCULAT!ON*****~****.
write (9,1000) eps, cn, gain, dell, azzz

C
close(9)
end

C
C
C

subroutine gag lg2Ie (g2, azz, cn, eps,cnn)
C
c subroutine for AO <= 0.65
C

- - x=azz
prod =1.

fact =1.

sum =1.

summ = 0.
k 0

420 k k+ 1
prod = prod*(l-cn-1.)
fact =fact * k
arg =(x**k)/(2.0*k+1.0)

argg = k*(x**(k-1))/(2.0*k+1.0)
term = prod*arg/fact
termm = prod~argg/f act
sum =sum+term
sumin = summ+terrmm
if(abs(terrn).t. I.E-i 0) go to 540
go to 420

540 gO=(2.*cnn*(x/((1 .-x)*' ,nn))*sum)-eps
gi =(g0+eps)6((l ./x)±(cnn/(l .-x)))+2.crin*(x/((1 .0-x)**cnn))*summ
g2 = gO/gi
return
end

C
C
C

subroutine gOglg2gt (g2, azz, cn, eps, cnn, beta)
C
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c subroutine for AO > 0.65
C

x = 1.O-azz
prod =1.

fact =1.

sum =1.
summ =0.
k 0

670 kk + 1
prod = prod*(k+0.5-1)
fact =fact*k

arg =(x**k)'(cnn/Qk+cnn))

argg = k*(x**(k-1))*(cnn/(k+cnn))
term =prod*arg/fact
termm = prod~argg/f act
sum = sum+term
summ = summ-ternmm
if (abs(terrn).It.1.E-1 0) go to 800
go to 670

800 ssum= (0.5/azz**0.5)*(beta-((x**cnn)/cnn)*sum)
ssumm = ((-0. 5/azz) ssum) +((0. 5/azz **0. 5)*(x**cn) (sum- (x/cn n)
* *umm))

gO = (2.0*cnn*(azz/(x**cnn))*ssum)-eps
g 1 = (gO+eps) *((1 .0/azz)+(cnn/x))+2.0*cnn*(azzi(x**cnrn))*ssumm
g2 = gO/gl
return
end

C

subroutine gamfun(gamma,w)
C
c gamma function
C

dimension b(8)
c

data (b(i),i=1,8)/-.577191652, .988205891, -.897056937,
*.918206857,-756704078, .482199394, -.193527818, .035868343/

C
iw = int(w)
tw =w-iw
if(iw.gt.0) go to 920
gamma = 1.0/fw
go to 970

920 gamma =1
do 960J 11lw-i
gamma =gamma*(w-j)

960 continue
970 gtw 1
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do 1000 k1,8
gfw = gfw + (b(k)*(fw**k))

1000 continue
gamma = gamma*gfw
return
end
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LIST OF SYMBOLS

AB Bore Area

a Parameter (Eq. B-28)

ao Pidduck-Kent Characteristic Parameter (Eq. B-33)

B Separation Constant (Eq. B-23)

B,(a,b) Incomplete Beta Function

C Propellant Charge Mass

C(xo) Gas Mass Between Breech and x0 (Eq. 8-113)

CV Specific Heat at Constant Volume

EP(t) Gas Internal Energy
V.-E0  Initial Gas Internal Energy

2Fl(a,b;c;z) Gauss Hypergeometric Function

f(xo) Function Describing Spatial Dependence of z (x0,t) (Eq. B-19)

f-f(Y) Value of f(xo) at Projectile Base

K, K(xo) Adiabatic Constant

KE Kinetic Energy

M Projectile Mass

n Polytropic Index, (y - 1)-1

P Gas Pressure

P(t) Space Mean Gas Pressure

P(x 0, t) Pressure of Gas E!ement Initially Located at x.

q(g•) Integration Variable (Eq. B-41)

R Gas Constant

S(7l,ao) Integral Arising in Pidduck-Kent Derivation; Specific Gauss Hypergeometric

Function (Eq. B-40 and 8-41)

t Time
T Gas Temperature

T(t) Space Mean Gas Temperature

T(xot) Temperature of Gas Element Initially Located at x.

u(xo0 t) Velocity of Gas Element Initially Located at x0

UP Projectile Velocity

W(xo,t) Function of Density of Gas Element Initially Located at x0 (Eq. B-12)

x(X0,t) Position of Gas Element Initially Located at x0

x0  Initial Location of Gas Element

y(t) = x(yo,t) Projectile Position

Yo Initial Projectile Position
Z(xo,t) Pidduck-Kent Variable, Reduced Gas Element Position (Eq. B-7)

y Ratio of Specific Heats
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Pidduck-Kent Characteristic Parameter (Eq. 8-83)

Ratio of Propellant Charge Mass to Projectile Mass

"11 Gas Covolume
W(xo) Integration Variable (Eq. B-66)

p Gas Density
p(xor) Density of Gas Element Initially Located at x.

p(t) Space Mean Gas Density
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